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Abstract—We present a deep reinforcement learning (RL)
approach for an automatic trading of contracts for difference
(CfD) on indices. Our contribution proves that profitable auto-
matic trading is possible and, if applied in that or a similar
way, may lead to resistance lines as observed in derivatives
market. As the noisy nature of economic trends complicates
predictions, especially in speculative domains like CfD, we do
not predict courses but instead train a RL trading agent to
learn an overall lucrative policy. Therefore, we simulate a virtual
CfD market environment, based on historical trading data. This
environment provides a partially observable Markov decision
process (POMDP) to reinforcement learners.

Index Terms—Contract for Difference, CfD, Reinforcement
Learning, RL, Neural Networks, Long Short-Term Memory,
LSTM, Q-learning, Deep Learning

I. INTRODUCTION

Artificial intelligence applications offer new perspectives,
possibilities and tools for economic modelling and reasoning
[1]. These tools can help employees in the financial industry to
assess risks. Especially in speculative business, a statistically
appropriate, automated handling of risk can help to avoid large
economic losses. Therefore we simulate a derivative market as
a partially observable Markov decision process (POMDP) for
Reinforcement Learning.

To determine a reward for the agents action, the environment
evaluates the trade action on historical market data and returns
the financial profit or loss. The agent then tries to find
an optimal policy that maximizes the expected rewards. To
approximate an optimal policy, we use deep neural networks
and evaluate both a feedforward neural network and a recurrent
long short-term memory network (LSTM). As a reinforce-
ment learning method, we propose a Q-learning approach
with prioritised experience replay. To evaluate the real world
applicability of our approach, we also perform a test under
real market conditions.

We begin this paper by introducing Contracts for Differences
and presenting relevant state-of-the-art research in section II.
In section III, we explain our implementation in detail and
in section IV we illuminate our evaluation process and the
results we obtained. The conclusion in section VI ends this
paper with a summary, a short discussion and possible future
work.

Uwe Handmann
Computer Science Institute
Hochschule Ruhr West
Bottrop, Germany
uwe.handmann @hs-ruhrwest.de

A. Contracts for Difference

A contract for Difference (CfD), a form of a total return
swap contract, allows two parties to exchange the performance
and income of an underlying asset for interest payments. In
other words, economic players may bet on rising or falling
prices and profit, if the real price development matches their
bet. Due to the possibility of highly leveraged bets, high wins
may occur as well as high losses.

In contrast to other derivatives, such as knockout certificates,
warrants or forward transactions, a CfD allows the independent
setting of stop-loss and take-profit values. Setting a take-
profit and stop-loss value automatically closes the deal, if
the underlying course strikes the corresponding threshold. If
the asset development does not correspond to the bet, but
develops in the opposite direction, a depth arises which can
lead to additional financing obligations. A security deposit,
also referred to as a margin, fulfils the purpose of hedging the
transaction. Since additional funding obligations in the event
of default can easily exceed the margin, individual traders can
suffer very high losses in a very short time if they have not
set a stop-loss value.

Concerning legal aspects, CfD trading currently faces an
embargo in the United States of America. According to a
general ruling of the Federal Financial Supervisory Authority
(Bundesanstalt fr Finanzdienstleistungsaufsicht), a broker in
Germany may only offer such speculative options to his
customers, if they have no additional liability in case of
default, but instead only lose their security deposit.

II. STATE OF THE ART

Using only historical trade data, [4] investigates a LSTM-
based course prediction on the Chinese stock market with
accuracies between 64.3% and 77.2%, operating on daily
time scales. State-of-the-art stock market prediction usually
incorporates external textual information [3, 10, 5]. A deep
learning LSTM implementation by [2] learns to predict stock
prices based on news text together with pricing information.
Concerning stock market prices, [8] proposed a reinforcement
learning system to optimize financial objective functions on
the basis of certain indicators. Instead of striving for good
predictions on stock market prices, we propose a deep rein-
forcement learning approach. This allows an agent to learn
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Fig. 1: Our feedforward architecture.

to act on arbitrary time scales on a speculative CfD market.
To the best of our knowledge, no deep reinforcement learning
appliances exist for CfD trading.

III. METHOD

We aim to find optimal trading policies in adjustable
environment setups, using Q-learning, as proposed by [11].
To boost the training efficiency, we employ a prioritized
experience replay memory for all our models [9]. We use
AdaGrad updates as a weight update rule [6]. As for an
observed state s, the underlying POMDP presents a tick chart
of length [. The tick chart consists of a sequence of ask and
bid prices, with the corresponding ask and bid trade volumes.
We denote the price values per tick as pgsk, Prig and the trade
volumes as Vg sk, Vpid-

A. Models

We investigate both a feedforward and a LSTM architecture.
Both architectures feature the same input and output layers
setup, but have different hidden layers. The input layer con-
tains the state s, in form of a tick data sequence with length [.
As for the output layer, the neural network approximates the
Q-values Q(s,a) for each action in the action space a € A.
To approximate these values, we use an output layer of |A]
neurons, each neuron with linear activation. Each action a € A
may invoke a different trade order.

1) Feedforward: Our feedforward neural network features
a hidden part of three dense layers, as sketched in figure 1.
The first two dense layers consist of 500 rectifying linear units
with a small bias of 0.1. We use the He weight initialisation
with a uniform distribution to initialise the weights. To obtain a
roughly the same number of weights as we have in our LSTM
architecture, we append a third layer with 180 rectifying linear
units, also with a bias of 0.1. For an input length of [ = 500
and an action space size of |A| = 3, the feedforward network
has a total of 840,540 parameters.

2) LSTM: We use a LSTM network with forget gates as
proposed by [7]. The architecture consists of a single recurrent
layer with 100 rectifying linear units, as shown in figure
2. We initialise the gates weights using the default normal
distribution. For a fixed input length of [ = 500 and an action
space size of |A| = 3, the LSTM network has a total of
840, 300 parameters.
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Fig. 2: Our LSTM architecture.

B. Environment

We implement a simple market logic that operates on
historical trading data on a tick time scale as a basis for a
POMDP. The environment processes the agents trading actions
without a delay, which simplifies analytical investigations but
discards the important factor of latency. To increases the
information content presented to the agent in each observation,
we remove equal successive ticks. This results in a reduced
input sequence length but discards the information about how
long a particular state lasts.

As a state s, the environment presents a sequence of [ unique
ticks, starting from a random point ¢ in trade history x. We
adjust each state for the mean value:

s=xft:t+1—Z[t:t+1]

For each state s, the agent chooses an action a. If the agent
chooses the action a = 0 to open no trade, the agent receives
a reward of 0 and observes the next state. An episode in this
environment terminates if the agent chooses to open a deal
with an action a # 0. When the agent performs an action, the
simulation runs forward until the market price reaches either
the take-profit or the stop-loss value. The environment then
returns the achieved financial profit or loss as a reward, scaled
by a constant factor. Algorithm 1 in the appendix shows the
simulated CfD market logic and the corresponding Q-learning
procedure in pseudo code.

I1V. EVALUATION

To evaluate our approach, we use a DE30 CfD index with a
nominal value of €25 per lot at a 5% leverage. We reflect the
boundary conditions of the chosen asset in our simulation by
setting an adequate reward scaling factor. A small trade volume
of 0.01 lot leads to a reward scaling factor of ¢ = 0.25 for the
training and testing procedure.

As a data basis for our market simulation, we recorded about
a million unique trade ticks as a data basis for the training
environment and about half a million unique ticks for our
testing procedure. In this evaluation, we use the models as
described in IIT with an action space of size |A| = 3. The
action a = 0 does not cause a trade order but makes the agent
wait and observe the next tick. To open a long position, the
agent would choose a = 1, while the action a = 2 would



cause the opening of a short position.

To find good training parameters for our models, we have
conducted a grid search in a space of batch size, learning
rate and input sequence length. We evaluate batch sizes
b € {10,50, 100}, learning rates € {10~4,107%,1076} and
input sequence lengths [ € {50,100, 250}. By comparing the
final equities after 1, 000 test trades we find an optimal param-
eter configuration. For the feedforward architecture, we find
the optimal training parameter configuration in (b = 100,l =
50,1 = 107°). Concerning the single layer LSTM network,
we find the best test result for in (b= 10,1 = 50, = 107%).

A. Training

For each memory record, we have a starting state si, the
chosen action a, the follow-up state s, alongside with the
achieved reward r and a variable e. The variable e tells us if
the replayed experience features a closed trade, thereby ending
in a terminal state. In a training run, the agent performs a total
of 250,000 learning steps. For each learning step, we sample
a batch of b independent experiences (s1,a, s, 7, ¢) from the
prioritised replay memory. Then, we apply an AdaGrad weight
update to the neural network, based on the difference between
the predicted and the actual Q-values.

B. Test

To evaluate our models, we perform tests on unseen
market data. If for an optimal action a the expected reward
Q(s,a) < 0, the agent does not execute the order, as we
want our agent to achieve a profit and not a minimal loss.
This increases the time between trades at the benefit of more
likely success. We test each feedforward and LSTM network
by performing a total of 1,000 test trades on unseen data.
Each test run starts with an equity of €1000.

From the action distribution in figure 3, we can see that
both the feedforward and the LSTM agent tend to open short
positions more frequently. To perform a trade, the feedforward
network observes for 2429 ticks on average, while the LSTM
network waits for 4,654 tick observations before commiting
to any trade action. While the LSTM network tends to wait
and observe, by choosing the action a = 0 more frequently,
the feedforward network makes decisions faster. We can see an
increase in equity for both our models in figure 3. Furthermore,
the LSTM network seems to have a conceptual advantage
due to its immanent handling of sequences. Looking at the
differences in the profit distribution, as shown in figure 3, we
find that the LSTM network achieves more low profits.

V. REAL WORLD APPLICATION

For a real world proof of concept, we use the API and login
credentials as provided by X Open Hub. We let our real world
test run for ten trading days, in which the agent opened and
closed 16 trades without manual interference. All of the test
trades resulted in a positive return value, so we can’t make
a statement about the inherent risk of a defaulting position.
Figure 6 shows the individual profits achieved by the agent
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Fig. 3: Test results. Top: action distribution. Mid: equity
development. Bottom: profit distribution.



and the corresponding increase in equity.

When operating with a single open trade per time, as originally
intended in our learning process, we observed the effects of
latency in the real world, such that the observed state actually
contains past information. This causes the agent to decide an
action upon old values, lowering the temporal precision. Also,
the agents orders come to pass late, such that the state has
already changed and the agent misses its intended position
to set the take-profit and stop-loss values. To accommodate
for the latency problems, we increase the action space size
to A = |10| and introduce a function dp,o¢it(a) to map a to
a certain delta. This delta creates a distance for the stop-loss
and take-profit values from the opening price, for example:

0, :a=0
2, :a=1a=6

5 a=2a=7
dPTOfit(a) = 10

ta=3,a=28
25, ra=4,a=9
50, :a=5,a=10

This workaround introduced some slack into the strategy to
accomodate for the various problems introduced by latency.
Like dprofit(a), a function djoss(a) returns a stop-loss delta.
Setting djoss(a) = dprorit(a) means to set a stop-loss value as
far away from the opening price as the take-profit value. This
may, for example, lead to an optimal high frequency trading
strategy at chance-risk-equality. Conceptually, these adjustable
delta values allow the agent to anticipate different magnitudes
of price changes. Also, a user may influence the automatic
trading system during runtime by changing the parameters of
dprofit(a> and dloss (a)

In our real world example, set the djoss(a) = 20.0-dprosit(a).
This decreases the risk of immediate default, but potentially
leads to a high loss. Also we superimpose a rule-based hedging
system, which allows the agent to open one long position, one
short position and a third arbitrary position contemporaneous.
To make full use of the margin provided by the demo account,
we have increased the trading volume from 0.01 to 0.33.

We have designed an LSTM architecture with an additional
layer of 250 LSTM units, as shown in figure 4. Using these
settings, we have trained the LSTM network with a training
parameter configuration of (b = 50,1 = 250,77 = 10~°). In the
corresponding learning dynamics, as shown figure 5, we can
see that the agents maintain potential high wins while trying
to reduce losses, which result in an overall surplus during
training. To keep the agent up to date with the real world
market data, we have trained the network out of trading time.
Each weekend, a training run with 250,000 learning steps
optimized the network from scratch, using the last weeks data
plus the past data from previous weeks.

VI. CONCLUSION

We have contributed a parametrisable training environment
that lets reinforcement learning agents learn different strategies
for CfD trading. Our neural network implementations serve as
a proof of concept for artificially intelligent trading automata
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Fig. 4: A more sophisticated LSTM architecture for a real
world application.
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Fig. 5: The learning dynamics of our real world LSTM
example.

that operate on tick time scales. As our approach conceptually
allows to learn trading strategies of arbitrary time scales, a user
may provide minutely, hourly or even daily closing prices as
a data basis for training as well. Considering high frequency
trading strategies, we state that feedforward networks suit
best due to their low inference and training time at very
promising test results. During our investigations of real world
applicability, we found the order latency and the available
equity as the main factors of a profitable and secure automated
high frequency trading approach. Comparing the results of the
recurrent LSTM network to the simple feedforward network,
we state that assuming sequences in this kind of trading
data may slightly improve results. Another key observation
of our investigation reveals the importance of using a training
setup that matches the real trading conditions. Furthermore
we observed that if we perform trades without a stop-loss
value, the CfD remains open and matches the observation of
resistance lines as found in derivatives market.
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Fig. 6: Top: The profits achieved in our real world example.
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A. Discussion

Although our contribution proves that artificially intelligent
trading automata may learn different strategies if given an
appropriate training environment, we did not fully test the
effects of changing the training environment parameters. We
did not investigate the effect of adjusting the chance-risk-ratio
at training time, neither did we study the effect of larger
replay memory sizes, other learning rules that AdaGrad or
other learning schemes than Q-learning. Instead of using batch
normalisation with a division by the standard deviation, we
only subtracted the mean value. Also, our training environment
currently comes with the drawback of not running in parallel;
the underlying market simulation does not proceed until the
agent has committed to an action. As we had sudden jumps in
our recorded tick data due to missing records that may lead to
impossible profits or losses, we manually set profit thresholds
in order to avoid flawed values. As the demo account that we
have used for our real world example had a limited validity,

which left us only 20 trading days on the DE30 index, we did
not observe enough trades to make a reliable statement about
the long time reliability of that concrete strategy.

B. Future work

So far we have only used course data of a single trading

symbol. The application of our method on other assets, espe-
cially in the field of currency exchange, may give us a deeper
understanding of machine learning in economic domains. In
future work, we may study the benefit of aggregated input se-
quences of different assets. For example, a convolutional neu-
ral network may correlate course data from different sources,
in order to improve an optimal policy. More sophisticated
methods of transfer learning may enable us to reuse already
acquired knowledge to improve the performance on unknown
assets. For instance, we may use progressive neural networks
to transfer knowledge into multiple action spaces. This allows
to learn trading on multiple assets simultaneously, making use
of correlations in a large input space.
Also, the trade proposals of our agents may serve as an input
for more sophisticated trading algorithms that employ prior
market knowledge. As an example, a rule-based system that
incorporates long term market knowledge may make use of
the agents proposals to provide a fully automatic, reliable
trading program. Such a rule-based system might prevent the
agent to open positions if above or below a certain threshold,
that a human operator may set according to his or her prior
knowledge of the market. Furthermore, future work may
consider the integration of economic news text as input word
vectors.
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APPENDIX

CfD environment for Q-learning

Algorithm 1 CfD Q-learning

1:
2
3
4:
5:
6
7
8
9

10:
11:

procedure TRAINING
x < cleaned historic trade data
| < input sequence length
¢ < constant factor to scale rewards
M < experience replay memory
7 <— Network policy, including exploration
dprofit, Aloss < delta values for take-profit and stop-loss
while learning do

t < random point of time in trading history
while t < len(z) — [ do
reward < 0
terminal < 0
state; < x[t : t + 1] — mean(z[t : t +1])
action < 7(statey)
if action = no trade then
t 4 t+1
else
if action = long then
take-profit < x[t + ] + dpropit(action)
stop-loss < x[t + 1] — djoss(action)
while t < len(z) — [ do
t—t+]
price < x[t + l][bid price]
if price > take-profit then
reward < c - (price — take-profit + dpro i (action))
terminal < 1
if price < stop-loss then
reward < c - (price — stop-loss — dj,ss(action))
terminal < 1
if action = short then
take-profit < x[t + 1] — dpropit(action)
stop-loss < x[t + 1] + djoss(action)
while ¢t < len(z) — [ do
tt+]
price < x[t + l|[ask price]
if price < take-profit then
reward < c - (take-profit — price + dprofit(action))
terminal < 1
if price > stop-loss then
reward < c - (stop-loss — price — dj,ss(action))
terminal < 1
states « x[t : t + 1] — mean(z[t : t +1])
append to M(statey , action, stateq, reward, terminal)
if len(M) > batchsize then
experience < sample(M)
learn(experience)
update priority(experience)




