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Abstract: Transfer learning is a machine learning technique that uses previously acquired knowledge
from a source domain to enhance learning in a target domain by reusing learned weights. This
technique is ubiquitous because of its great advantages in achieving high performance while saving
training time, memory, and effort in network design. In this paper, we investigate how to select the
best pre-trained model that meets the target domain requirements for image classification tasks. In
our study, we refined the output layers and general network parameters to apply the knowledge of
eleven image processing models, pre-trained on ImageNet, to five different target domain datasets.
We measured the accuracy, accuracy density, training time, and model size to evaluate the pre-trained
models both in training sessions in one episode and with ten episodes.
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1. Introduction

Deep learning is a subfield of machine learning that allows computers to automatically
interpret representations of data by learning from examples. Transfer learning is a deep
learning technique that uses previous knowledge to learn new tasks and is becoming
increasingly popular in many applications with the support of Graphics Processing Unit
(GPU) acceleration. Transfer learning has many benefits that have attracted researchers
in different domains, to name but a few: medical applications [1], remote sensing [2],
optical satellite images [3], supporting automated recycling [4], natural language process-
ing [5], mobile applications [6], etc. However, there are some caveats in choosing the best
pre-trained model for such applications, as most focus on accuracy and leave out other
important parameters. Therefore, it is important to also consider other metrics such as
training time or memory requirements before proceeding to a concrete implementation.

Transfer learning is performed with pre-trained models, typically large Convolutional
Neural Networks (CNNs) that are pre-trained on large standard benchmark datasets
and then reused for the new target task. The reuse of such pre-trained models can be
easily implemented by, for example, replacing certain layers with other task-specific layers
and then training the model for the target task. Moreover, many frameworks such as
PyTorch, MATLAB, Caffe, TensorFlow, Onnx, etc., provide several pre-trained models that
can help researchers implement this promising technique. The state-of-the-art has many
architectures, each with its own characteristics, that are suitable for CNN applications.
However, the performance of the resulting transfer learning network depends on the pre-
trained model used. Before going into the reuse of these models, it seems that there is a
great deal of freedom in choosing the model.

According to [7], the size and similarity of the target dataset and the source task can
be used as rules of thumb to choose the pre-trained model. ImageNet is a leading dataset
due to its popularity and data diversity. However, fine-tuning pre-trained models that are
trained on ImageNet is not per se able to achieve good results on spectrograms, for example.
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Besides, following the previous strategy might not be enough with the current challenging
constraints that require high accuracy, a short training time, and limited hardware resources
for specific applications. Previously pre-trained model analysis was presented in [8], who
collected reported values from the literature and compared the models’ performance on
ImageNet to evaluate several scores, such as the top-five accuracy normalized to model
complexity and power consumption.

Another worthwhile attempt was presented by [9], who benchmarked pre-trained
models on ImageNet using multiple indices such as accuracy, computational complexity,
memory usage, and inference time to help practitioners better fit the resource constraints.

Choosing the best pre-trained model is a complex dilemma that needs to be well
understood, and researchers could feel confused about picking the most suitable option.
We performed extensive experiments to classify five datasets on eleven pre-trained models.
We provide in-depth insight and offer a feasible guideline for transfer learning that uses
a pre-trained model by introducing an overview of the tested models and datasets and
evaluating their performance using different metrics. Since most pre-trained models are
used to classify ImageNet, we conducted our research on different datasets, including
standard and non-standard tasks.

The paper is organized as follows: It starts by introducing the research gap in the
Introduction in Section 1. Section 2 summarizes the related learning methods. Section 3
gives an overview of the main characteristics of the tested models and datasets. Section 4
focuses on the implementation of the models. Results are presented and discussed in
Section 5. Finally, the conclusion of the work is given in Section 6.

2. Summary of Related Learning Methods

Machine learning is data-hungry; therefore, it has tremendous success in data-intensive
applications, but it is limited when the dataset is small. This section summarizes different
types of related machine learning methods for solving image classification tasks, including
zero-shot learning, one-shot learning, few-shot learning, and transfer learning. One com-
mon advantage of these methods is that they leave out the burden of collecting large-scale
supervised data and the issue of data scarcity.

2.1. Zero-Shot Learning

With zero-shot learning, it is possible to train a model without accessing data with non-
observed labels during training by using previous labels and some auxiliary information. It
assumes that the model can classify instances of unseen visual examples. This method looks
promising when new unlabeled examples are introduced frequently [10]. In the zero-shot
learning method, the test set and training class set are disjoint [11]. Several solutions to
this problem have been proposed, such as learning intermediate attribute classifiers [12],
learning a mixture of seen class proportions [13], or compatibility learning frameworks [14],
for example.

2.2. One-Shot Leaning

One of the limitations of deep learning is that it demands a huge amount of training
data examples to learn the weights. However, one-shot learning seeks to predict the
required output based on one or a few learning examples. However, this is usually achieved
by either sharing feature representations [15] or model parameters [16]. Methods such as
this are useful for classification tasks when it is hard to classify data for every possible class
or when new classes are added [10]. One-shot learning has been proven to be an efficient
method as the number of known labels grows because in this case, it is most likely that the
model has already learned a label that is very similar to the one to be learned [17].
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2.3. Few-Shot Learning

This method refers to feeding a model with a small number of training data samples.
It is useful for applications that lack information or can be accessed only with difficulty
due to concerns about privacy, safety, or ethical issues [18].

2.4. Transfer Learning

In line with the previously mentioned methods, and according to [19–21], transfer
learning methods often use few-shot learning, where prior knowledge is transformed
from the source task into a few-shot task [19]. There are two ways to implement transfer
learning: fine-tuning only the classifier layers, which keeps the entire model’s weight
constant, excluding the last layer, and fine-tuning all layers, which allows the weights to
change throughout the entire network. Section 4 describes these two ways technically [22].

3. Models and Datasets

In this section, we present the CNN-design-based architectures as a critical factor in
constructing the pre-trained models, the tested models, and the datasets.

3.1. CNN-Design-Based Architectures

The CNN is the fundamental component in developing a pre-trained model, and to
understand the architecture, some criteria define the design architecture of the models,
as follows:

• Depth: The NN depth is represented by the number of successive layers. Theoretically,
deep NNs are more efficient than shallow architectures, and increasing the depth of
the network by adding hidden layers has a significant effect on supervised learning,
particularly for classification tasks [23]. However, cascading layers in a Deep Neural
Network (DNN) is not straightforward, and this may cause an exponential increase in
the computational cost;

• Width: The width of a CNN is as significant as the depth. Stacking layers may learn
various feature representations, but they would not learn useful features. Therefore, a
DNN should be wide enough, so the loss at the local minima could be smaller with
larger layer widths [24];

• Spatial kernel size: A CNN has many parameters and hyperparameters, including
weights, biases, the number of layers, the activation function, the learning rate, and the
kernel size, which define the level of granularity. Choosing the kernel size affects the
correlation of neighboring pixels. Smaller filters extract local and fine-grained features,
whereas larger filters extract coarse-grained features [25];

• Skip connection: Although a deeper NN yields better performance, it may face chal-
lenges in performance degradation, vanishing gradients, or higher test and training
errors [26]. To tackle these problems, the shortcut layer connection was first proposed
by [27] by skipping some intermediate layers to allow the special flow of information
across the layers, for example zero-padding, projection, dropout, skip connections, etc.;

• Channels: CNNs have powerful performance in learning features automatically,
and this can be dynamically performed by tuning the kernel weights. However,
some feature maps have little or no role in object discrimination [28] and could cause
overfitting as well. Those feature maps (or the channels) can be optimally selected in
designing the CNN to avoid overfitting.

3.2. Neural Network Architectures

This study tested eleven popular pre-trained models. Figure 1 gives a comprehensive
infographic representation over time. Table 1 depicts all the tested models with their main
characteristics based on their design, which is discussed in Section 3.1.
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Table 1. The tested models with their main characteristics, where * refers to features specially designed
for the model.

Model Year Depth Main Design Characteristics Reference

AlexNet 2012 8 Spatial [29]
VGG-16 2014 16 Spatial and depth [30]

GoogLeNet 2014 22 Depth and width [31]
ResNet-18 2015 18 Skip connection [32]

SqueezeNet 2016 18 Channels [33]
ResNext 2016 101 Skip connection [34]

DenseNet 2017 201 Skip connection [35]
MobileNet 2017 54 Depthwise separable conv * [36]

WideResNet 2017 16 Width [37]
ShuffleNet-V2 2017 50 Channel shuffle * [38]

MnasNet 2019 No linear sequence Neural architecture search * [39]

2012 2014 2015

ResNext

DenseNet (201)
similar rest net with 

half params

MobileNet (54)
Mobile models

Wide ResNet (16)
ILSVRC 2nd place

ShuffleNet-V2 (50)

MnasNet 
(no linear modules sequence) 

SqueezeNet (18)
op�mize model sizeVGG-16 (16)

ILSVRC 1st runner-up

2016 2017 2019

AlexNet (8) 
ILSVRC Winning entry

GoogLeNet (22)
ILSVRC Winning entry 

ResNet (18)
ILSVRC Winning entry

Color Map:

Spatial
Depth
Width
Skip connection
Channels
Special Features

conv1 conv2 conv3 conv4 conv5 fc6 fc7

Filter Concatena�on

1x1 Convolu�ons

1x1 Convolu�ons 1x1 Convolu�ons

1x1 Convolu�ons3x3 Convolu�ons 5x5 Convolu�ons

3x3 max pooling

Previous layer

Figure 1. Infographic of the tested pre-trained models. Each model is introduced with its architecture
symbol, the number of layers between brackets, and design specification (see the color map).

3.3. Datasets

A combination of standard datasets was tested, which were: CIFAR10 with 60 K
images [40], Modified National Institute of Standards and Technology (MNIST) with
70 K images [41], Hymenoptera [42], and non-standard, which were: smartphones and
augmented smartphones [43], as follows:

3.3.1. Hymenoptera

This is a small RGB dataset that is used to classify ants and bees from a PyTorch
tutorial on transfer learning. It consists of 245 training images and 153 testing images.

3.3.2. Smartphone Dataset

This is a relatively small dataset of different smartphone models, representing six
brands, namely: Acer, HTC, Huawei, Apple, LG, and Samsung. It contains 654 RGB images
with twelve classes, which are: Acer Z6, HTC 12S, HTC R70, Huawei Mate 10, Huawei
P20, iPhone 5, iPhone 7 Plus, iPhone 11 Pro Max, LG G2, LG Nexus 5, Samsung Galaxy S20
Ultra, and Samsung S10E. We created this dataset as a case study in a previous work [43],
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to show that transfer learning can reach high accuracy with a small dataset to support
automated e-waste recycling through device classification. We collected the images from
the search engines focusing on the backside where unique features such as the logo and
camera lenses, which are distinguishing because most front-sides of modern smartphones
look similar, as showcased in Figure 2.

Figure 2. Example of a subset of the smartphone dataset.

3.3.3. Augmented Smartphone Dataset

Data augmentation is usually used to increase the volume of the dataset effortlessly.
We applied a rotation operation in combination with increasing the noise. For the rotation
operation, we rotated by r ∈ {45◦, 135◦, 225◦, 315◦}; for the noise operation, we added
noise in percentages p ∈ {10%, 25%, 50%} by adding pixels from a discrete uniform
distribution {0. . . 255 · p}. This resulted in a total of twelve augmentation operations for
each image. Therefore, the total number of images was multiplied by 12 to obtain a total
number of 8502 images in the augmented dataset, including the 654 original images.

4. Implementation

This study performed two scenarios under the same condition, using an Nvidia GTX
1080 TiGPU to train and evaluate eleven PyTorch vision models in a sequential fashion,
namely AlexNet, VGG-16, Inception-V1 (GoogLeNet), ResNet-18, SqueezeNet, DenseNet,
ResNext, MobileNet, Wide ResNet, ShuffleNet-V2, and MnasNet. We re-trained each model
on five tasks, namely MNIST, CIFAR10, Hymenoptera, smartphones, and augmented
smartphones, each in a grid search over learning rates η ∈ {10−2, 10−3, 10−4} with the
ADAM optimizer and a batch size equal to 10. In our plots, we show only the model with
the highest accuracy in the overall learning rate. To overcome overfitting, we performed
early stopping, so we saved model weights only if the validation accuracy increased. That
is, if the validation accuracy decreased, we still used the best model found so far.

We chose to perform two experiments in our paper where a pre-trained model was
used to:

• Fine-tune the classifier layer only: This method keeps the feature extraction layers from
the pre-trained model fixed, so-called frozen. We then re-initialized the task-specific
classifier parts, as given by reference in the PyTorch vision model implementations [42],
with random values. If the PyTorch model did not have an explicit classifier part,
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for example the ResNet18 architecture, we fine-tuned only the last fully connected
layer. We froze all other weights during training. This technique saved training time
and, to some degree, overcame the problem of a small-sized target dataset because it
only updated a few weights;

• Fine-tune all layers: For this method, we used the PyTorch vision models with original
weights as pre-trained on ImageNet and fine-tuned the entire parameter vector. In the-
ory, this technique achieves higher accuracy and generalization, but it requires a longer
training time since it is used for initializing weights by continuing the backpropagation
instead of random initialization in scratch training.

PyTorch vision models typically have a classifier part and a feature extraction part.
Fine-tuning the output layers means fine-tuning the classifier part, which results in a large
variation in the model size. We froze all other weights during training. We assessed the
model performance with four metrics: the accuracy, the accuracy density, the model size,
and training time on a GPU.

4.1. Accuracy Density

This represents the accuracy divided by the number of parameters:

density =
accuracy

#parameters
(1)

A higher value corresponds to a higher model efficiency in terms of parameter usage.

4.2. Accuracy and Model Sizes vs. Training Time

Along with measuring accuracy across tasks, we also measured the training time in
seconds and the number of learning parameters in MB. The more complex the model is,
the more parameters need to be optimized. When determining the memory utilization of a
GPU for each model, the number of parameters is critical. This is the amount of memory
that will be allocated to the network and the amount of memory needed to process a batch.

5. Results

We present our results for two experiments, learning from one episode and learning
from ten episodes. In each experiment, we tested the fine-tuning of both the classifier batch
and the entire network. In the configurations with few shots, each sample was presented
only once in a single training episode, while in the configuration with ten episodes, each
sample was presented ten times accordingly.

5.1. One-Episode Learning
5.1.1. Fine-Tuning the Full Layers

As shown in Figure 3, we calculated the average accuracy densities of all tested
datasets, and we found that SqueezeNet with full tuning showed the highest accuracy
density among all models, particularly AlexNet, which came in tenth place. This result af-
firmed the original hypothesis when SqueezeNet was designed, that it preserves AlexNet’s
accuracy with 50-times fewer parameters and less than a 0.5 MB model size [33].

5.1.2. Fine-Tuning the Classifier Layers Only

The results, as seen in Figure 3, were slightly different in terms of the accuracy density
in the order of the models, but it showed a big difference in the values, where ResNet18
was the most suitable candidate. Each Dataset is tested for both experiments and shown in
detail in Appendix A.
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Figure 3. Average accuracy densities with full tuning and tuning the classifier layer only for one episode.

5.2. Ten-Episode Learning

We tested 10 independent trials and calculated the average results to avoid any bias,
as follows.

5.2.1. Fine-Tuning the Full Layers

Figure 4 shows that ten-episodes learning did not affect the order of the models in
terms of the accuracy densities compared with the one-episode experiments, and the values
were higher to a small degree. Figure 5 shows the average model sizes and accuracy vs. the
training time for all tasks and models after fine-tuning the full layers of all datasets.

5.2.2. Fine-Tuning the Classifier Layers Only

We found that ResNet18 showed a satisfactory result again as the most efficient model
that used its parameters efficiently, as shown in Figure 4. Figure 6 shows the average
model sizes and accuracy vs. the training time for all tasks and models after fine-tuning the
classifier layer only of all datasets. MnasNet had the poorest performance, making it the
least-favorable model in terms of the error metrics, yet it showed a low model complexity
and a short training time. The most complex model in all experiments was VGG-16, and the
accuracy density figures confirmed this fact. As a result, it might be less trustworthy for
embedded and mobile devices. Each Dataset is tested for both experiments and shown in
detail in Appendix B.
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0.0 0.5 1.0 1.5 2.0 1.0 × 10-5

vgg16
wide_resnet50_2

alexnet
densenet

resnext50_32x4d
resnet18

googlenet
mnasnet

mobilenet
shufflenet

squeezenet

Average accuracy densities in full tune

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

vgg16
alexnet

wide_resnet50_2
densenet

resnext50_32x4d
mnasnet

mobilenet
shufflenet
googlenet

squeezenet
resnet18

Average accuracy densities in output tune

Average accuracy density (%acc/#params)

Figure 4. Average accuracy densities with full tuning and tuning the classifier layer only for ten episodes.
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Tuning hyperparameters means finding the best set of parameter values for a learning
algorithm. In CNNs, the initial layers are designed to extract global features, whereas the
later ones are more task-specific. Therefore, when tuning the classification layer, only the
final layer for classification is replaced, while the other layers are frozen (the weights of
the other layers are fixed). This means utilizing the knowledge of the overall architecture
as a feature extractor and using it as a starting point for retraining. Consequently, it
achieved high performance with a smaller number of parameters and a shorter training
time, as shown in Figure 6. Usually, this scenario is used when the target task labels are
scarce [44]. On the other hand, full tuning means retraining the whole network (the weights
are updated after each epoch) with a longer training time and more parameters, as shown
in Figure 5. When target task labels are plentiful, this scenario is typically applied. Each
Dataset is tested for tuning the classifier layer only and tuning full layers and shown in
detail for ten episodes in Appendix C, and for one episode in Appendix D.
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6. Conclusions

DNNs’ performance has been enhanced over time in many aspects. Nonetheless,
there are critical parameters that define which pre-trained model perfectly matches the
application requirements. In this paper, we presented a comprehensive evaluation of eleven
popular pre-trained models on five datasets as a guiding tool for choosing the appropriate
model before deployment. We conducted two different sets of experiments: one-episode
learning and ten-episode learning, with each experiment involving tuning the classifier
layer only and full tuning. The previous findings, however, might provide some clues for
choosing the right model for fine-tuning the classification layer only. For applications that
require high accuracy, GoogLeNet, DenseNet, ShuffleNet-V2, ResNet-18, and ResNext are
the best candidates, while SqueezeNet is for the accuracy density, and AlexNet for the
shortest training time, and SqueezeNet, ShuffleNet, MobileNet, MnasNet, and GoogLeNet
are almost equal regarding the smallest model size, for embedded systems applications,
for example. On the other hand, we can also provide some suggestions when fine-tuning
only the classification layers. DenseNet achieved the highest accuracy, while ResNet18 the
best accuracy density, and SqueezeNet the shortest training time. In addition, all models
had small model sizes except AlexNet and VGG-16. Although we provided guidelines and
some hints, our argumentation does not give a final verdict, but it supports decisions for
choosing the right pre-trained model based on the task requirements.

Thus, for specific application constraints, selecting the right pre-trained model can be
challenging due to the tradeoffs among training time, model size, and accuracy as decision
factors to produce better scores.

For future work, we plan to test more evaluation metrics with the provided parameters
to facilitate decision-making in choosing the optimum model to fine-tune. Furthermore,
we aim to systematically investigate the usability of all available a priori and a posteriori
metadata for estimating useful transfer learning hyperparameters.
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Appendix A. Accuracy Densities for Each Task with One-Episode Learning

• Accuracy densities for one-episode learning on CIFAR-10, Figure A1;
• Accuracy densities for one-episode learning on Hymenoptera, Figure A2;
• Accuracy densities for one-episode learning on MNIST, Figure A3;
• Accuracy densities for one-episode learning on augmented smartphone data, Figure A4;
• Accuracy densities for one-episode learning on original smartphone data, Figure A5.
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Figure A1. Accuracy densities for one-episode learning on CIFAR-10.

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012
Accuracy density [%acc / #params]

vgg16
wide_resnet50_2

alexnet
densenet

resnext50_32x4d
resnet18

googlenet
mnasnet

mobilenet
shufflenet

squeezenet

Accuracy densities for hymenoptera in full tune

0.00 0.02 0.04 0.06 0.08
Accuracy density [%acc / #params]

vgg16
alexnet

wide_resnet50_2
densenet

resnext50_32x4d
mobilenet

mnasnet
shufflenet
googlenet

squeezenet
resnet18

Accuracy densities for hymenoptera in output tune

Figure A2. Accuracy densities for one-episode learning on Hymenoptera.
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Figure A3. Accuracy densities for one-episode learning on MNIST.
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Figure A4. Accuracy densities for one-episode learning on augmented smartphone data.
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Figure A5. Accuracy densities for one-episode learning on original smartphone data.

Appendix B. Accuracy Densities for Each Task with Ten-Episode Learning

• Accuracy densities for ten-episode learning on CIFAR-10, Figure A6;
• Accuracy densities for ten-episode learning on Hymenoptera, Figure A7;
• Accuracy densities for ten-episode learning on MNIST, Figure A8;
• Accuracy densities for ten-episode learning on augmented smartphone data, Figure A9;
• Accuracy densities for ten-episode learning on original smartphone data, Figure A10.
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Figure A6. Accuracy densities for ten-episodes learning on CIFAR-10.



Mach. Learn. Knowl. Extr. 2022, 4 34

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012
Accuracy density [%acc / #params]

vgg16
wide_resnet50_2

alexnet
densenet

resnext50_32x4d
resnet18

googlenet
mnasnet

mobilenet
shufflenet

squeezenet

Accuracy densities for hymenoptera in full tune

0.00 0.02 0.04 0.06 0.08
Accuracy density [%acc / #params]

vgg16
alexnet

densenet
resnext50_32x4d
wide_resnet50_2

mobilenet
mnasnet

googlenet
shufflenet

squeezenet
resnet18

Accuracy densities for hymenoptera in output tune

Figure A7. Accuracy densities for ten-episodes learning on Hymenoptera.
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Figure A8. Accuracy densities for ten-episodes learning on MNIST.
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Figure A9. Accuracy densities for ten-episodes learning on augmented smartphone data.
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Figure A10. Accuracy densities for ten-episodes learning on original smartphone data.

Appendix C. Accuracy vs. Training Time and Number of Parameters (Model Size) for
Each Task with Ten-Episode Learning

• Accuracy vs. training time and model size for CIFAR-10 for ten-episode training,
Figure A11;
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• Accuracy vs. training time and model size for MNIST for ten-episode training, Figure A12;
• Accuracy vs. training time and model size for Hymenoptera for ten-episode training,

Figure A13;
• Accuracy vs. training time and model size for original smartphone data for ten-episode

training, Figure A14;
• Accuracy vs. training time and model size for augmented smartphone data for ten-

episode training, Figure A15;
• Model sizes and accuracy vs. training time for all tasks and models after fine-tuning

the classifier layer only, where A refers to Augmented smartphones, C to CIFAR10, H
to Hymenoptera, M to MNIST, and O to the Original smartphone dataset, Figure A16;

• Model sizes and accuracy vs. training time for all tasks and models after full fine-
tuning, where A refers to Augmented smartphones, C to CIFAR10, H to Hymenoptera,
M to MNIST, and O to the Original smartphone dataset, Figure A17.
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Figure A11. Accuracy vs. training time and model size for CIFAR-10 for ten-episode training.
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Figure A12. Accuracy vs. training time and model size for MNIST for ten-episode training.
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Figure A13. Accuracy vs. training time and model size for Hymenoptera for ten-episode training.
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Figure A14. Accuracy vs. training time and model size for original smartphone data for ten-
episode training.
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Figure A15. Accuracy vs. training time and model size for augmented smartphone data for ten-
episode training.
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Figure A16. Model sizes and accuracy vs. training time for all tasks and models after fine-tuning
classifier layer only, where A refers to Augmented smartphones, C to CIFAR10, H to Hymenoptera,
M to MNIST, and O to the Original smartphone dataset.
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Figure A17. Model sizes and accuracy vs. training time for all tasks and models after full fine-tuning,
where A refers to Augmented smartphones, C to CIFAR10, H to Hymenoptera, M to MNIST, and O
to the Original smartphone dataset.

Appendix D. Accuracy vs. Training Time and Model Size for Each Task with
One-Episode Learning

• Accuracy vs. training time and model size for CIFAR-10 for one-episode training,
Figure A18;

• Accuracy vs. training time and model size for MNIST for one-episode training, Figure A19;
• Accuracy vs. training time and model size for Hymenoptera for one-episode training,

Figure A20;
• Accuracy vs. training time and model size for original smartphone data for one-

episode training, Figure A21;
• Accuracy vs. training time and model size for augmented smartphone data for one-

episode training, Figure A22.

250 500 750 1000 1250 1500 1750
Training time [s]

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
 [

%
]

mnasnet-output

mobilenet-output

wide_resnet50_2-output

googlenet-outputresnet18-output
resnext50 output

squeezenet-output alexnet-output

shufflenet-output
squeezenet-full

densenet-output
mnasnet-full

alexnet-full

vgg16-full

vgg16-output

wide_resnet50_2-full
shufflenet-full

mobilenet-full

resnet18-full
resnext50_32x4d-full

densenet-full

googlenet-full

Model sizes and accuracies vs training time for CIFAR10

#params

5130

13434768

26864406

40294045

53723683

67153322

80582960

94012598

107442237

120871875

Figure A18. Accuracy vs, training time and model size for CIFAR-10 for one-episode training.
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Figure A19. Accuracy vs, training time and model size for MNIST for one-episode training.
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Figure A20. Accuracy vs, training time and model size for Hymenoptera for one-episode training.
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Figure A21. Accuracy vs, training time and model size for original smartphone data for one-
episode training.
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Figure A22. Accuracy vs, training time and model size for augmented smartphone data for one-
episode training.
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