
����������
�������

Citation: Abou Baker, N.; Zengeler,

N.; Handmann, U. A Transfer

Learning Evaluation of Deep Neural

Networks for Image Classification.

Mach. Learn. Knowl. Extr. 2022, 4,

22–41. https://doi.org/10.3390/

make4010002

Academic Editor: Andreas Holzinger

Received: 3 December 2021

Accepted: 10 January 2022

Published: 14 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machine learning &

knowledge extraction

Article

A Transfer Learning Evaluation of Deep Neural Networks for
Image Classification
Nermeen Abou Baker * , Nico Zengeler and Uwe Handmann

Computer Science Institute, Ruhr West University of Applied Sciences, 46236 Bottrop, Germany;
Nico.Zengeler@hs-ruhrwest.de (N.Z.); uwe.handmann@hs-ruhrwest.de (U.H.)
* Correspondence: nermeen.baker@hs-ruhrwest.de

Abstract: Transfer learning is a machine learning technique that uses previously acquired knowledge
from a source domain to enhance learning in a target domain by reusing learned weights. This
technique is ubiquitous because of its great advantages in achieving high performance while saving
training time, memory, and effort in network design. In this paper, we investigate how to select the
best pre-trained model that meets the target domain requirements for image classification tasks. In
our study, we refined the output layers and general network parameters to apply the knowledge of
eleven image processing models, pre-trained on ImageNet, to five different target domain datasets.
We measured the accuracy, accuracy density, training time, and model size to evaluate the pre-trained
models both in training sessions in one episode and with ten episodes.

Keywords: transfer learning; image classification; deep neural network

1. Introduction

Deep learning is a subfield of machine learning that allows computers to automatically
interpret representations of data by learning from examples. Transfer learning is a deep
learning technique that uses previous knowledge to learn new tasks and is becoming
increasingly popular in many applications with the support of Graphics Processing Unit
(GPU) acceleration. Transfer learning has many benefits that have attracted researchers
in different domains, to name but a few: medical applications [1], remote sensing [2],
optical satellite images [3], supporting automated recycling [4], natural language process-
ing [5], mobile applications [6], etc. However, there are some caveats in choosing the best
pre-trained model for such applications, as most focus on accuracy and leave out other
important parameters. Therefore, it is important to also consider other metrics such as
training time or memory requirements before proceeding to a concrete implementation.

Transfer learning is performed with pre-trained models, typically large Convolutional
Neural Networks (CNNs) that are pre-trained on large standard benchmark datasets
and then reused for the new target task. The reuse of such pre-trained models can be
easily implemented by, for example, replacing certain layers with other task-specific layers
and then training the model for the target task. Moreover, many frameworks such as
PyTorch, MATLAB, Caffe, TensorFlow, Onnx, etc., provide several pre-trained models that
can help researchers implement this promising technique. The state-of-the-art has many
architectures, each with its own characteristics, that are suitable for CNN applications.
However, the performance of the resulting transfer learning network depends on the pre-
trained model used. Before going into the reuse of these models, it seems that there is a
great deal of freedom in choosing the model.

According to [7], the size and similarity of the target dataset and the source task can
be used as rules of thumb to choose the pre-trained model. ImageNet is a leading dataset
due to its popularity and data diversity. However, fine-tuning pre-trained models that are
trained on ImageNet is not per se able to achieve good results on spectrograms, for example.

Mach. Learn. Knowl. Extr. 2022, 4, 22–41. https://doi.org/10.3390/make4010002 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make4010002
https://doi.org/10.3390/make4010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0002-9683-5920
https://orcid.org/0000-0002-1319-5877
https://orcid.org/0000-0003-1230-9446
https://doi.org/10.3390/make4010002
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make4010002?type=check_update&version=2


Mach. Learn. Knowl. Extr. 2022, 4 23

Besides, following the previous strategy might not be enough with the current challenging
constraints that require high accuracy, a short training time, and limited hardware resources
for specific applications. Previously pre-trained model analysis was presented in [8], who
collected reported values from the literature and compared the models’ performance on
ImageNet to evaluate several scores, such as the top-five accuracy normalized to model
complexity and power consumption.

Another worthwhile attempt was presented by [9], who benchmarked pre-trained
models on ImageNet using multiple indices such as accuracy, computational complexity,
memory usage, and inference time to help practitioners better fit the resource constraints.

Choosing the best pre-trained model is a complex dilemma that needs to be well
understood, and researchers could feel confused about picking the most suitable option.
We performed extensive experiments to classify five datasets on eleven pre-trained models.
We provide in-depth insight and offer a feasible guideline for transfer learning that uses
a pre-trained model by introducing an overview of the tested models and datasets and
evaluating their performance using different metrics. Since most pre-trained models are
used to classify ImageNet, we conducted our research on different datasets, including
standard and non-standard tasks.

The paper is organized as follows: It starts by introducing the research gap in the
Introduction in Section 1. Section 2 summarizes the related learning methods. Section 3
gives an overview of the main characteristics of the tested models and datasets. Section 4
focuses on the implementation of the models. Results are presented and discussed in
Section 5. Finally, the conclusion of the work is given in Section 6.

2. Summary of Related Learning Methods

Machine learning is data-hungry; therefore, it has tremendous success in data-intensive
applications, but it is limited when the dataset is small. This section summarizes different
types of related machine learning methods for solving image classification tasks, including
zero-shot learning, one-shot learning, few-shot learning, and transfer learning. One com-
mon advantage of these methods is that they leave out the burden of collecting large-scale
supervised data and the issue of data scarcity.

2.1. Zero-Shot Learning

With zero-shot learning, it is possible to train a model without accessing data with non-
observed labels during training by using previous labels and some auxiliary information. It
assumes that the model can classify instances of unseen visual examples. This method looks
promising when new unlabeled examples are introduced frequently [10]. In the zero-shot
learning method, the test set and training class set are disjoint [11]. Several solutions to
this problem have been proposed, such as learning intermediate attribute classifiers [12],
learning a mixture of seen class proportions [13], or compatibility learning frameworks [14],
for example.

2.2. One-Shot Leaning

One of the limitations of deep learning is that it demands a huge amount of training
data examples to learn the weights. However, one-shot learning seeks to predict the
required output based on one or a few learning examples. However, this is usually achieved
by either sharing feature representations [15] or model parameters [16]. Methods such as
this are useful for classification tasks when it is hard to classify data for every possible class
or when new classes are added [10]. One-shot learning has been proven to be an efficient
method as the number of known labels grows because in this case, it is most likely that the
model has already learned a label that is very similar to the one to be learned [17].



Mach. Learn. Knowl. Extr. 2022, 4 24

2.3. Few-Shot Learning

This method refers to feeding a model with a small number of training data samples.
It is useful for applications that lack information or can be accessed only with difficulty
due to concerns about privacy, safety, or ethical issues [18].

2.4. Transfer Learning

In line with the previously mentioned methods, and according to [19–21], transfer
learning methods often use few-shot learning, where prior knowledge is transformed
from the source task into a few-shot task [19]. There are two ways to implement transfer
learning: fine-tuning only the classifier layers, which keeps the entire model’s weight
constant, excluding the last layer, and fine-tuning all layers, which allows the weights to
change throughout the entire network. Section 4 describes these two ways technically [22].

3. Models and Datasets

In this section, we present the CNN-design-based architectures as a critical factor in
constructing the pre-trained models, the tested models, and the datasets.

3.1. CNN-Design-Based Architectures

The CNN is the fundamental component in developing a pre-trained model, and to
understand the architecture, some criteria define the design architecture of the models,
as follows:

• Depth: The NN depth is represented by the number of successive layers. Theoretically,
deep NNs are more efficient than shallow architectures, and increasing the depth of
the network by adding hidden layers has a significant effect on supervised learning,
particularly for classification tasks [23]. However, cascading layers in a Deep Neural
Network (DNN) is not straightforward, and this may cause an exponential increase in
the computational cost;

• Width: The width of a CNN is as significant as the depth. Stacking layers may learn
various feature representations, but they would not learn useful features. Therefore, a
DNN should be wide enough, so the loss at the local minima could be smaller with
larger layer widths [24];

• Spatial kernel size: A CNN has many parameters and hyperparameters, including
weights, biases, the number of layers, the activation function, the learning rate, and the
kernel size, which define the level of granularity. Choosing the kernel size affects the
correlation of neighboring pixels. Smaller filters extract local and fine-grained features,
whereas larger filters extract coarse-grained features [25];

• Skip connection: Although a deeper NN yields better performance, it may face chal-
lenges in performance degradation, vanishing gradients, or higher test and training
errors [26]. To tackle these problems, the shortcut layer connection was first proposed
by [27] by skipping some intermediate layers to allow the special flow of information
across the layers, for example zero-padding, projection, dropout, skip connections, etc.;

• Channels: CNNs have powerful performance in learning features automatically,
and this can be dynamically performed by tuning the kernel weights. However,
some feature maps have little or no role in object discrimination [28] and could cause
overfitting as well. Those feature maps (or the channels) can be optimally selected in
designing the CNN to avoid overfitting.

3.2. Neural Network Architectures

This study tested eleven popular pre-trained models. Figure 1 gives a comprehensive
infographic representation over time. Table 1 depicts all the tested models with their main
characteristics based on their design, which is discussed in Section 3.1.



Mach. Learn. Knowl. Extr. 2022, 4 25

Table 1. The tested models with their main characteristics, where * refers to features specially designed
for the model.

Model Year Depth Main Design Characteristics Reference

AlexNet 2012 8 Spatial [29]
VGG-16 2014 16 Spatial and depth [30]

GoogLeNet 2014 22 Depth and width [31]
ResNet-18 2015 18 Skip connection [32]

SqueezeNet 2016 18 Channels [33]
ResNext 2016 101 Skip connection [34]

DenseNet 2017 201 Skip connection [35]
MobileNet 2017 54 Depthwise separable conv * [36]

WideResNet 2017 16 Width [37]
ShuffleNet-V2 2017 50 Channel shuffle * [38]

MnasNet 2019 No linear sequence Neural architecture search * [39]

2012 2014 2015

ResNext

DenseNet (201)
similar rest net with 

half params

MobileNet (54)
Mobile models

Wide ResNet (16)
ILSVRC 2nd place

ShuffleNet-V2 (50)

MnasNet 
(no linear modules sequence) 

SqueezeNet (18)
op�mize model sizeVGG-16 (16)

ILSVRC 1st runner-up

2016 2017 2019

AlexNet (8) 
ILSVRC Winning entry

GoogLeNet (22)
ILSVRC Winning entry 

ResNet (18)
ILSVRC Winning entry

Color Map:

Spatial
Depth
Width
Skip connection
Channels
Special Features

conv1 conv2 conv3 conv4 conv5 fc6 fc7

Filter Concatena�on

1x1 Convolu�ons

1x1 Convolu�ons 1x1 Convolu�ons

1x1 Convolu�ons3x3 Convolu�ons 5x5 Convolu�ons

3x3 max pooling

Previous layer

Figure 1. Infographic of the tested pre-trained models. Each model is introduced with its architecture
symbol, the number of layers between brackets, and design specification (see the color map).

3.3. Datasets

A combination of standard datasets was tested, which were: CIFAR10 with 60 K
images [40], Modified National Institute of Standards and Technology (MNIST) with
70 K images [41], Hymenoptera [42], and non-standard, which were: smartphones and
augmented smartphones [43], as follows:

3.3.1. Hymenoptera

This is a small RGB dataset that is used to classify ants and bees from a PyTorch
tutorial on transfer learning. It consists of 245 training images and 153 testing images.

3.3.2. Smartphone Dataset

This is a relatively small dataset of different smartphone models, representing six
brands, namely: Acer, HTC, Huawei, Apple, LG, and Samsung. It contains 654 RGB images
with twelve classes, which are: Acer Z6, HTC 12S, HTC R70, Huawei Mate 10, Huawei
P20, iPhone 5, iPhone 7 Plus, iPhone 11 Pro Max, LG G2, LG Nexus 5, Samsung Galaxy S20
Ultra, and Samsung S10E. We created this dataset as a case study in a previous work [43],



Mach. Learn. Knowl. Extr. 2022, 4 26

to show that transfer learning can reach high accuracy with a small dataset to support
automated e-waste recycling through device classification. We collected the images from
the search engines focusing on the backside where unique features such as the logo and
camera lenses, which are distinguishing because most front-sides of modern smartphones
look similar, as showcased in Figure 2.

Figure 2. Example of a subset of the smartphone dataset.

3.3.3. Augmented Smartphone Dataset

Data augmentation is usually used to increase the volume of the dataset effortlessly.
We applied a rotation operation in combination with increasing the noise. For the rotation
operation, we rotated by r ∈ {45◦, 135◦, 225◦, 315◦}; for the noise operation, we added
noise in percentages p ∈ {10%, 25%, 50%} by adding pixels from a discrete uniform
distribution {0. . . 255 · p}. This resulted in a total of twelve augmentation operations for
each image. Therefore, the total number of images was multiplied by 12 to obtain a total
number of 8502 images in the augmented dataset, including the 654 original images.

4. Implementation

This study performed two scenarios under the same condition, using an Nvidia GTX
1080 TiGPU to train and evaluate eleven PyTorch vision models in a sequential fashion,
namely AlexNet, VGG-16, Inception-V1 (GoogLeNet), ResNet-18, SqueezeNet, DenseNet,
ResNext, MobileNet, Wide ResNet, ShuffleNet-V2, and MnasNet. We re-trained each model
on five tasks, namely MNIST, CIFAR10, Hymenoptera, smartphones, and augmented
smartphones, each in a grid search over learning rates η ∈ {10−2, 10−3, 10−4} with the
ADAM optimizer and a batch size equal to 10. In our plots, we show only the model with
the highest accuracy in the overall learning rate. To overcome overfitting, we performed
early stopping, so we saved model weights only if the validation accuracy increased. That
is, if the validation accuracy decreased, we still used the best model found so far.

We chose to perform two experiments in our paper where a pre-trained model was
used to:

• Fine-tune the classifier layer only: This method keeps the feature extraction layers from
the pre-trained model fixed, so-called frozen. We then re-initialized the task-specific
classifier parts, as given by reference in the PyTorch vision model implementations [42],
with random values. If the PyTorch model did not have an explicit classifier part,



Mach. Learn. Knowl. Extr. 2022, 4 27

for example the ResNet18 architecture, we fine-tuned only the last fully connected
layer. We froze all other weights during training. This technique saved training time
and, to some degree, overcame the problem of a small-sized target dataset because it
only updated a few weights;

• Fine-tune all layers: For this method, we used the PyTorch vision models with original
weights as pre-trained on ImageNet and fine-tuned the entire parameter vector. In the-
ory, this technique achieves higher accuracy and generalization, but it requires a longer
training time since it is used for initializing weights by continuing the backpropagation
instead of random initialization in scratch training.

PyTorch vision models typically have a classifier part and a feature extraction part.
Fine-tuning the output layers means fine-tuning the classifier part, which results in a large
variation in the model size. We froze all other weights during training. We assessed the
model performance with four metrics: the accuracy, the accuracy density, the model size,
and training time on a GPU.

4.1. Accuracy Density

This represents the accuracy divided by the number of parameters:

density =
accuracy

#parameters
(1)

A higher value corresponds to a higher model efficiency in terms of parameter usage.

4.2. Accuracy and Model Sizes vs. Training Time

Along with measuring accuracy across tasks, we also measured the training time in
seconds and the number of learning parameters in MB. The more complex the model is,
the more parameters need to be optimized. When determining the memory utilization of a
GPU for each model, the number of parameters is critical. This is the amount of memory
that will be allocated to the network and the amount of memory needed to process a batch.

5. Results

We present our results for two experiments, learning from one episode and learning
from ten episodes. In each experiment, we tested the fine-tuning of both the classifier batch
and the entire network. In the configurations with few shots, each sample was presented
only once in a single training episode, while in the configuration with ten episodes, each
sample was presented ten times accordingly.

5.1. One-Episode Learning
5.1.1. Fine-Tuning the Full Layers

As shown in Figure 3, we calculated the average accuracy densities of all tested
datasets, and we found that SqueezeNet with full tuning showed the highest accuracy
density among all models, particularly AlexNet, which came in tenth place. This result af-
firmed the original hypothesis when SqueezeNet was designed, that it preserves AlexNet’s
accuracy with 50-times fewer parameters and less than a 0.5 MB model size [33].

5.1.2. Fine-Tuning the Classifier Layers Only

The results, as seen in Figure 3, were slightly different in terms of the accuracy density
in the order of the models, but it showed a big difference in the values, where ResNet18
was the most suitable candidate. Each Dataset is tested for both experiments and shown in
detail in Appendix A.



Mach. Learn. Knowl. Extr. 2022, 4 28

0.0 0.2 0.4 0.6 0.8 1.0 1.2

vgg16
alexnet

wide_resnet50_2
densenet

resnext50_32x4d
resnet18

googlenet
mnasnet

mobilenet
shufflenet

squeezenet

Average accuracy densities in full tune

1.0× 10-5

0.00000 0.00025 0.00050 0.00075 0.00100 0.00125 0.00150 0.00175

vgg16
alexnet

wide_resnet50_2
resnext50_32x4d

densenet
shufflenet
mnasnet

mobilenet
googlenet

squeezenet
resnet18

Average accuracy densities in output tune

Average accuracy density (%acc/#params)

Average accuracy density (%acc/#params) 

Figure 3. Average accuracy densities with full tuning and tuning the classifier layer only for one episode.

5.2. Ten-Episode Learning

We tested 10 independent trials and calculated the average results to avoid any bias,
as follows.

5.2.1. Fine-Tuning the Full Layers

Figure 4 shows that ten-episodes learning did not affect the order of the models in
terms of the accuracy densities compared with the one-episode experiments, and the values
were higher to a small degree. Figure 5 shows the average model sizes and accuracy vs. the
training time for all tasks and models after fine-tuning the full layers of all datasets.

5.2.2. Fine-Tuning the Classifier Layers Only

We found that ResNet18 showed a satisfactory result again as the most efficient model
that used its parameters efficiently, as shown in Figure 4. Figure 6 shows the average
model sizes and accuracy vs. the training time for all tasks and models after fine-tuning the
classifier layer only of all datasets. MnasNet had the poorest performance, making it the
least-favorable model in terms of the error metrics, yet it showed a low model complexity
and a short training time. The most complex model in all experiments was VGG-16, and the
accuracy density figures confirmed this fact. As a result, it might be less trustworthy for
embedded and mobile devices. Each Dataset is tested for both experiments and shown in
detail in Appendix B.

Average accuracy density (%acc/#params)

0.0 0.5 1.0 1.5 2.0 1.0 × 10-5

vgg16
wide_resnet50_2

alexnet
densenet

resnext50_32x4d
resnet18

googlenet
mnasnet

mobilenet
shufflenet

squeezenet

Average accuracy densities in full tune

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

vgg16
alexnet

wide_resnet50_2
densenet

resnext50_32x4d
mnasnet

mobilenet
shufflenet
googlenet

squeezenet
resnet18

Average accuracy densities in output tune

Average accuracy density (%acc/#params)

Figure 4. Average accuracy densities with full tuning and tuning the classifier layer only for ten episodes.



Mach. Learn. Knowl. Extr. 2022, 4 29

Tuning hyperparameters means finding the best set of parameter values for a learning
algorithm. In CNNs, the initial layers are designed to extract global features, whereas the
later ones are more task-specific. Therefore, when tuning the classification layer, only the
final layer for classification is replaced, while the other layers are frozen (the weights of
the other layers are fixed). This means utilizing the knowledge of the overall architecture
as a feature extractor and using it as a starting point for retraining. Consequently, it
achieved high performance with a smaller number of parameters and a shorter training
time, as shown in Figure 6. Usually, this scenario is used when the target task labels are
scarce [44]. On the other hand, full tuning means retraining the whole network (the weights
are updated after each epoch) with a longer training time and more parameters, as shown
in Figure 5. When target task labels are plentiful, this scenario is typically applied. Each
Dataset is tested for tuning the classifier layer only and tuning full layers and shown in
detail for ten episodes in Appendix C, and for one episode in Appendix D.

2000 4000 6000 8000 10000 12000
Training Time [s]

40

45

50

55

60

65

70

75

80

85

A
cc

u
ra

cy
 %

Model sizes (Number of parameters x 10 6) and accuracy vs training time for all tasks and models after tuning full layers

Alex

 DenseGoogLe

Mnas

Mobile

Res18 ResNext

Squeeze

Shuffle

Vgg16

WideRes50

57.05

26.5

5.61

3.12

2.24

11.18 23

0.74

1.26

134.31

66.86

Figure 5. Model sizes and accuracy vs. training time for all tasks and models after fine-tuning
full layers.

70 80 90 100 110 120
Training Time [s]

66

68

70

72

74

76

78

80

82

84

86

A
cc

u
ra

cy
 %

Model sizes (Number of parameters x 10 4) and accuracy vs training time for all tasks and models after tuning the classification layers only

Alex

 Dense

GoogLe

Mnas

Mobile
Res18

ResNext

Squeeze

Shuffle

Vgg16

WideRes50

5457.18

2.03

0.94

1.18

1.18
0.47

1.89

0.47

0.94

11958.4

1.89

Figure 6. Model sizes and accuracy vs. training time for all tasks and models after fine-tuning the
classifier layer only.



Mach. Learn. Knowl. Extr. 2022, 4 30

6. Conclusions

DNNs’ performance has been enhanced over time in many aspects. Nonetheless,
there are critical parameters that define which pre-trained model perfectly matches the
application requirements. In this paper, we presented a comprehensive evaluation of eleven
popular pre-trained models on five datasets as a guiding tool for choosing the appropriate
model before deployment. We conducted two different sets of experiments: one-episode
learning and ten-episode learning, with each experiment involving tuning the classifier
layer only and full tuning. The previous findings, however, might provide some clues for
choosing the right model for fine-tuning the classification layer only. For applications that
require high accuracy, GoogLeNet, DenseNet, ShuffleNet-V2, ResNet-18, and ResNext are
the best candidates, while SqueezeNet is for the accuracy density, and AlexNet for the
shortest training time, and SqueezeNet, ShuffleNet, MobileNet, MnasNet, and GoogLeNet
are almost equal regarding the smallest model size, for embedded systems applications,
for example. On the other hand, we can also provide some suggestions when fine-tuning
only the classification layers. DenseNet achieved the highest accuracy, while ResNet18 the
best accuracy density, and SqueezeNet the shortest training time. In addition, all models
had small model sizes except AlexNet and VGG-16. Although we provided guidelines and
some hints, our argumentation does not give a final verdict, but it supports decisions for
choosing the right pre-trained model based on the task requirements.

Thus, for specific application constraints, selecting the right pre-trained model can be
challenging due to the tradeoffs among training time, model size, and accuracy as decision
factors to produce better scores.

For future work, we plan to test more evaluation metrics with the provided parameters
to facilitate decision-making in choosing the optimum model to fine-tune. Furthermore,
we aim to systematically investigate the usability of all available a priori and a posteriori
metadata for estimating useful transfer learning hyperparameters.

Author Contributions: Conceptualization, N.A.B. and N.Z.; methodology, N.A.B.; software, N.Z.;
writing—original draft preparation, N.A.B.; writing—review and editing, N.A.B. and N.Z.; supervi-
sion, U.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been partially funded by the Ministry of Economy, Innovation, Digitization,
and Energy of the State of North Rhine-Westphalia within the project Prosperkolleg.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Accuracy Densities for Each Task with One-Episode Learning

• Accuracy densities for one-episode learning on CIFAR-10, Figure A1;
• Accuracy densities for one-episode learning on Hymenoptera, Figure A2;
• Accuracy densities for one-episode learning on MNIST, Figure A3;
• Accuracy densities for one-episode learning on augmented smartphone data, Figure A4;
• Accuracy densities for one-episode learning on original smartphone data, Figure A5.



Mach. Learn. Knowl. Extr. 2022, 4 31

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010
Accuracy density [%acc / #params]

vgg16
wide_resnet50_2

alexnet
densenet

resnext50_32x4d
resnet18

googlenet
mnasnet

mobilenet
shufflenet

squeezenet

Accuracy densities for CIFAR10 in full tune

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
Accuracy density [%acc / #params]

vgg16
alexnet

wide_resnet50_2
densenet

resnext50_32x4d
mnasnet

mobilenet
googlenet
shufflenet
resnet18

squeezenet

Accuracy densities for CIFAR10 in output tune

Figure A1. Accuracy densities for one-episode learning on CIFAR-10.

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012
Accuracy density [%acc / #params]

vgg16
wide_resnet50_2

alexnet
densenet

resnext50_32x4d
resnet18

googlenet
mnasnet

mobilenet
shufflenet

squeezenet

Accuracy densities for hymenoptera in full tune

0.00 0.02 0.04 0.06 0.08
Accuracy density [%acc / #params]

vgg16
alexnet

wide_resnet50_2
densenet

resnext50_32x4d
mobilenet

mnasnet
shufflenet
googlenet

squeezenet
resnet18

Accuracy densities for hymenoptera in output tune

Figure A2. Accuracy densities for one-episode learning on Hymenoptera.



Mach. Learn. Knowl. Extr. 2022, 4 32

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012
Accuracy density [%acc / #params]

vgg16
wide_resnet50_2

alexnet
densenet

resnext50_32x4d
resnet18

googlenet
mnasnet

mobilenet
shufflenet

squeezenet

Accuracy densities for MNIST in full tune

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
Accuracy density [%acc / #params]

vgg16
alexnet

mnasnet
densenet

wide_resnet50_2
resnext50_32x4d

mobilenet
googlenet
shufflenet
resnet18

squeezenet

Accuracy densities for MNIST in output tune

Figure A3. Accuracy densities for one-episode learning on MNIST.

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010
Accuracy density [%acc / #params]

vgg16
alexnet

wide_resnet50_2
densenet

resnext50_32x4d
resnet18

googlenet
mnasnet

mobilenet
shufflenet

squeezenet

Accuracy densities for smartphone_augmented in full tune

0.000 0.002 0.004 0.006 0.008 0.010
Accuracy density [%acc / #params]

vgg16
alexnet

wide_resnet50_2
resnext50_32x4d

densenet
mnasnet

mobilenet
shufflenet
googlenet
resnet18

squeezenet

Accuracy densities for smartphone_augmented in output tune

Figure A4. Accuracy densities for one-episode learning on augmented smartphone data.



Mach. Learn. Knowl. Extr. 2022, 4 33

0 1 2 3 4 5 6
Accuracy density [%acc / #params]

vgg16
alexnet

wide_resnet50_2
densenet

resnext50_32x4d
resnet18

googlenet
mnasnet

mobilenet
shufflenet

squeezenet

Accuracy densities for smartphone_orig in full tune

1.0 × 10-5

0.000 0.002 0.004 0.006 0.008
Accuracy density [%acc / #params]

vgg16
alexnet

wide_resnet50_2
resnext50_32x4d

densenet
shufflenet
mnasnet

mobilenet
googlenet

squeezenet
resnet18

Accuracy densities for smartphone_orig in output tune

Figure A5. Accuracy densities for one-episode learning on original smartphone data.

Appendix B. Accuracy Densities for Each Task with Ten-Episode Learning

• Accuracy densities for ten-episode learning on CIFAR-10, Figure A6;
• Accuracy densities for ten-episode learning on Hymenoptera, Figure A7;
• Accuracy densities for ten-episode learning on MNIST, Figure A8;
• Accuracy densities for ten-episode learning on augmented smartphone data, Figure A9;
• Accuracy densities for ten-episode learning on original smartphone data, Figure A10.

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012
Accuracy density [%acc / #params]

vgg16
wide_resnet50_2

alexnet
densenet

resnext50_32x4d
resnet18

googlenet
mnasnet

mobilenet
shufflenet

squeezenet

Accuracy densities for CIFAR10 in full tune

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
Accuracy density [%acc / #params]

vgg16
alexnet

densenet
wide_resnet50_2
resnext50_32x4d

mnasnet
mobilenet
googlenet
shufflenet
resnet18

squeezenet

Accuracy densities for CIFAR10 in output tune

Figure A6. Accuracy densities for ten-episodes learning on CIFAR-10.



Mach. Learn. Knowl. Extr. 2022, 4 34

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012
Accuracy density [%acc / #params]

vgg16
wide_resnet50_2

alexnet
densenet

resnext50_32x4d
resnet18

googlenet
mnasnet

mobilenet
shufflenet

squeezenet

Accuracy densities for hymenoptera in full tune

0.00 0.02 0.04 0.06 0.08
Accuracy density [%acc / #params]

vgg16
alexnet

densenet
resnext50_32x4d
wide_resnet50_2

mobilenet
mnasnet

googlenet
shufflenet

squeezenet
resnet18

Accuracy densities for hymenoptera in output tune

Figure A7. Accuracy densities for ten-episodes learning on Hymenoptera.

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012 0.00014
Accuracy density [%acc / #params]

vgg16
wide_resnet50_2

alexnet
densenet

resnext50_32x4d
resnet18

googlenet
mnasnet

mobilenet
shufflenet

squeezenet

Accuracy densities for MNIST in full tune

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
Accuracy density [%acc / #params]

vgg16
alexnet

densenet
wide_resnet50_2
resnext50_32x4d

mobilenet
mnasnet

googlenet
shufflenet
resnet18

squeezenet

Accuracy densities for MNIST in output tune

Figure A8. Accuracy densities for ten-episodes learning on MNIST.



Mach. Learn. Knowl. Extr. 2022, 4 35

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012

vgg16
wide_resnet50_2

alexnet
densenet

resnext50_32x4d
resnet18

googlenet
mnasnet

mobilenet
shufflenet

squeezenet

Accuracy densities for smartphone_augmented in full tune

0.000 0.002 0.004 0.006 0.008 0.010 0.012
Accuracy density [%acc / #params]

vgg16
alexnet

wide_resnet50_2
resnext50_32x4d

densenet
mnasnet

mobilenet
googlenet
shufflenet
resnet18

squeezenet

Accuracy density [%acc / #params]

Accuracy densities for smartphone_augmented in output tune

Figure A9. Accuracy densities for ten-episodes learning on augmented smartphone data.

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012
Accuracy density [%acc / #params]

vgg16
wide_resnet50_2

alexnet
densenet

resnext50_32x4d
resnet18

googlenet
mnasnet

mobilenet
shufflenet

squeezenet

Accuracy densities for smartphone_orig in full tune

0.000 0.002 0.004 0.006 0.008 0.010 0.012
Accuracy density [%acc / #params]

vgg16
alexnet

wide_resnet50_2
densenet

resnext50_32x4d
mnasnet

mobilenet
shufflenet
googlenet

squeezenet
resnet18

Accuracy densities for smartphone_orig in output tune

Figure A10. Accuracy densities for ten-episodes learning on original smartphone data.

Appendix C. Accuracy vs. Training Time and Number of Parameters (Model Size) for
Each Task with Ten-Episode Learning

• Accuracy vs. training time and model size for CIFAR-10 for ten-episode training,
Figure A11;



Mach. Learn. Knowl. Extr. 2022, 4 36

• Accuracy vs. training time and model size for MNIST for ten-episode training, Figure A12;
• Accuracy vs. training time and model size for Hymenoptera for ten-episode training,

Figure A13;
• Accuracy vs. training time and model size for original smartphone data for ten-episode

training, Figure A14;
• Accuracy vs. training time and model size for augmented smartphone data for ten-

episode training, Figure A15;
• Model sizes and accuracy vs. training time for all tasks and models after fine-tuning

the classifier layer only, where A refers to Augmented smartphones, C to CIFAR10, H
to Hymenoptera, M to MNIST, and O to the Original smartphone dataset, Figure A16;

• Model sizes and accuracy vs. training time for all tasks and models after full fine-
tuning, where A refers to Augmented smartphones, C to CIFAR10, H to Hymenoptera,
M to MNIST, and O to the Original smartphone dataset, Figure A17.

resnext50-full

5000 10000 15000 20000 25000
Training time [s]

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

A
cc

u
ra

cy
 [

%
]

mnasnet-output
mobilenet-output

wide_resnet50_ output

googlenet-output
resnet18-output

resnext50_32x4d-output

squeezenet-output

shufflenet-output
densenet-output

alexnet-output
vgg16-output

alexnet-full
vgg16-full

squeezenet-full

wide_resnet50_2-full

shufflenet-fullresnet18-full
mnasnet-full

mobilenet-full googlenet-full
densenet-full

Model sizes and accuracies vs training time for CIFAR10

#params

5130

13434768

26864406

40294045

53723683

67153322

80582960

94012598

107442237

120871875

Figure A11. Accuracy vs. training time and model size for CIFAR-10 for ten-episode training.

1000 2000 3000 4000 5000 6000 7000 8000 9000
Training time [s]

92

94

96

98

100

A
cc

u
ra

cy
 [

%
]

wide_resnet50_2-output

mobilenet-output resnext50_32x4d-output

mnasnet-output

googlenet-output

resnet18-output
densenet-output

shufflenet-output

squeezenet-output

vgg16-output
alexnet-output vgg16-full

squeezenet-full
alexnet-full wide_resnet50_2-full

resnext50_32x4d-full
mobilenet-full mnasnet-full shufflenet-full

googlenet-fullresnet18-full

densenet-full

Model sizes and accuracies vs training time for MNIST

#params

5130

13434768

26864406

40294045

53723683

67153322

80582960

94012598

107442237

120871875

Figure A12. Accuracy vs. training time and model size for MNIST for ten-episode training.

50 60 70 80 90 100 110 120 130
Training time [s]

90

92

94

96

98

100

A
cc

u
ra

cy
 [

%
]

squeezenet-full

alexnet-full

alexnet-output
vgg16-full

squeezenet-output shufflenet-full

googlenet-output mobilenet-fullresnet18-full

shufflenet-output googlenet-full
vgg16-output

mobilenet-output

resnet18-output mnasnet-full densenet-fullwide_resnet50_2-full

mnasnet-output resnext50_32x4d-output wide_resnet50_2-output resnext50_32x4d-full

densenet-output

Model sizes and accuracies vs training time for hymenoptera

#params

1026

13427797

26854568

40281339

53708110

67134882

80561653

93988424

107415195

120841966

Figure A13. Accuracy vs. training time and model size for Hymenoptera for ten-episode training.



Mach. Learn. Knowl. Extr. 2022, 4 37

60 80 100 120 140
Training time [s]

60

70

80

90

100

mnasnet-output

shufflenet-output

wide_resnet50_2-output
mnasnet-full

mobilenet-output

shufflenet-full
resnext50_32x4d-output

googlenet-output densenet-output
alexnet-output

squeezenet-output squeezenet-full
mobilenet-full

resnet18-output googlenet-fullalexnet-full

resnet18-full

vgg16-full
vgg16-output

densenet-full
wide_resnet50_2-full

resnext50_32x4d-full

Model sizes and accuracies vs training time for smartphone_orig

#params

7182

13438254

26869326

40300398

53731470

67162542

80593614

94024686

107455758

120886830

Figure A14. Accuracy vs. training time and model size for original smartphone data for ten-
episode training.

200 400 600 800 1000
Training time [s]

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

A
cc

u
ra

cy
 [

%
]

mnasnet-output

wide_resnet50_2-output

googlenet-output

mobilenet-output
resnext50_32x4d-output

resnet18-output

shufflenet-output

squeezenet-output

alexnet-output vgg16-output

densenet-output

mnasnet-full
alexnet-full

squeezenet-full vgg16-full

shufflenet-full

resnet18-full resnext50_32x4d-fullgooglenet-full wide_resnet50_2-fullmobilenet-full densenet-full

Model sizes and accuracies vs training time for smartphone_augmented

#params

7182

13438254

26869326

40300398

53731470

67162542

80593614

94024686

107455758

120886830

Figure A15. Accuracy vs. training time and model size for augmented smartphone data for ten-
episode training.

50 100 150 200 250 300
Training time [s]

30

40

50

60

70

80

90

100

A
c
c
u
r
a
c
y
 [

%
]

mnasnet-C

mobilenet-C

wide_resnet50_2-C
googlenet-Cresnet18-C resnext50_32x4d-C

squeezenet-C
alexnet-C

shufflenet-C

mnasnet-M

wide_resnet50_2-M
mobilenet-M resnext50_32x4d-Mgooglenet-M

shufflenet-Mresnet18-M
squeezenet-M vgg16-M

alexnet-M

squeezenet-H

alexnet-H

resnet18-H
wide_resnet50_2-H

shufflenet-H
vgg16-H

googlenet-H
mobilenet-H

mnasnet-H
densenet-H

resnext50_32x4d-H

mnasnet-A

shufflenet-A
wide_resnet50_2-A

resnet18-A resnext50_32x4d-A

googlenet-A

mobilenet-A

alexnet-A
squeezenet-A

densenet-A

vgg16-A

wide_resnet50_2-O

shufflenet-O

mnasnet-O

resnext50_32x4d-O
googlenet-O

alexnet-O
densenet-O

squeezenet-O

mobilenet-O

resnet18-O

vgg16-O

Model sizes and accuracies vs training time for all tasks and models after output fine tuning

#params

1026

11961244

23921463

35881682

47841901

59802120

71762338

83722557

95682776

107642995

Figure A16. Model sizes and accuracy vs. training time for all tasks and models after fine-tuning
classifier layer only, where A refers to Augmented smartphones, C to CIFAR10, H to Hymenoptera,
M to MNIST, and O to the Original smartphone dataset.



Mach. Learn. Knowl. Extr. 2022, 4 38

200 400 600 800
Training time [s]

40

50

60

70

80

90

100

A
c
c
u
r
a
c
y
 [

%
]

squeezenet-C
mnasnet-Calexnet-C vgg16-C

wide_resnet50_2-C
shufflenet-Cmobilenet-Cresnet18-C resnext50_32x4d-C

googlenet-Cmnasnet-M

alexnet-M
squeezenet-M resnext50_32x4d-Mwide_resnet50_2-Mvgg16-M

googlenet-Mmobilenet-Mresnet18-M shufflenet-M

alexnet-H

squeezenet-H
shufflenet-H

googlenet-H
mobilenet-H
resnet18-H

vgg16-H

mnasnet-H
wide_resnet50_2-H

resnext50_32x4d-H

densenet-H

mnasnet-A

shufflenet-A
squeezenet-A

alexnet-A vgg16-A

googlenet-A

mobilenet-A

resnet18-A
wide_resnet50_2-A

resnext50_32x4d-A densenet-A

shufflenet-O

squeezenet-O

mnasnet-O

alexnet-O

googlenet-O

mobilenet-O

densenet-O

vgg16-O

wide_resnet50_2-O

resnet18-O

resnext50_32x4d-O

Model sizes and accuracies vs training time for all tasks and models after full fine tuning

#params

736450

14094595

27452740

40810885

54169030

67527176

80885321

94243466

107601611

120959756

Figure A17. Model sizes and accuracy vs. training time for all tasks and models after full fine-tuning,
where A refers to Augmented smartphones, C to CIFAR10, H to Hymenoptera, M to MNIST, and O
to the Original smartphone dataset.

Appendix D. Accuracy vs. Training Time and Model Size for Each Task with
One-Episode Learning

• Accuracy vs. training time and model size for CIFAR-10 for one-episode training,
Figure A18;

• Accuracy vs. training time and model size for MNIST for one-episode training, Figure A19;
• Accuracy vs. training time and model size for Hymenoptera for one-episode training,

Figure A20;
• Accuracy vs. training time and model size for original smartphone data for one-

episode training, Figure A21;
• Accuracy vs. training time and model size for augmented smartphone data for one-

episode training, Figure A22.

250 500 750 1000 1250 1500 1750
Training time [s]

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
 [

%
]

mnasnet-output

mobilenet-output

wide_resnet50_2-output

googlenet-outputresnet18-output
resnext50 output

squeezenet-output alexnet-output

shufflenet-output
squeezenet-full

densenet-output
mnasnet-full

alexnet-full

vgg16-full

vgg16-output

wide_resnet50_2-full
shufflenet-full

mobilenet-full

resnet18-full
resnext50_32x4d-full

densenet-full

googlenet-full

Model sizes and accuracies vs training time for CIFAR10

#params

5130

13434768

26864406

40294045

53723683

67153322

80582960

94012598

107442237

120871875

Figure A18. Accuracy vs, training time and model size for CIFAR-10 for one-episode training.



Mach. Learn. Knowl. Extr. 2022, 4 39

200 400 600 800 1000 1200 1400
Training time [s]

40

50

60

70

80

90

100

A
cc

u
ra

cy
 [

%
]

mnasnet-output

wide_resnet50_2-output
mobilenet-output

resnext50_32x4d-output
googlenet-output

shufflenet-outputresnet18-output densenet-output
mnasnet-full

squeezenet-output vgg16-outputalexnet-full
squeezenet-full

resnext50_32x4d-full
alexnet-output

densenet-fullwide_resnet50_2-fullvgg16-full
googlenet-fullmobilenet-full

resnet18-full shufflenet-full
Model sizes and accuracies vs training time for MNIST

#params

5130

13434768

26864406

40294045

53723683

67153322

80582960

94012598

107442237

120871875

Figure A19. Accuracy vs, training time and model size for MNIST for one-episode training.

6 8 10 12 14 16 18 20
Training time [s]

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

A
cc

u
ra

cy
 [

%
]

alexnet-full

squeezenet-output

squeezenet-full

shufflenet-fullalexnet-output

resnet18-output
wide_resnet50_2-output

googlenet-full
mobilenet-full

resnet18-full vgg16-full

shufflenet-output
mnasnet-full

wide_resnet50_2-full

vgg16-output

googlenet-output
mobilenet-output resnext50_32x4d-full

mnasnet-output
densenet-output

densenet-full

resnext50_32x4d-output

Model sizes and accuracies vs training time for hymenoptera

#params

1026

13427797

26854568

40281339

53708110

67134882

80561653

93988424

107415195

120841966

Figure A20. Accuracy vs, training time and model size for Hymenoptera for one-episode training.

6 8 10 12 14 16 18 20
Training time [s]

40

50

60

70

80

90

100

A
cc

u
ra

cy
 [

%
]

wide_resnet50_2-outputshufflenet-output

shufflenet-full
mnasnet-output

squeezenet-full

resnext50_32x4d-output

googlenet-output
alexnet-output

densenet-output
squeezenet-output

mnasnet-full
mobilenet-output

alexnet-full
googlenet-full

resnet18-output
mobilenet-full

vgg16-output

densenet-full
vgg16-full

wide_resnet50_2-full

resnet18-full

resnext50_32x4d-full

Model sizes and accuracies vs training time for smartphone_orig

#params

7182

13438254

26869326

40300398

53731470

67162542

80593614

94024686

107455758

120886830

Figure A21. Accuracy vs, training time and model size for original smartphone data for one-
episode training.

50 75 100 125 150 175 200
Training time [s]

60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
 [

%
]

mnasnet-output

mnasnet-full

shufflenet-output
wide_resnet50_2-output

resnet18-output

resnext50_32x4d-output

googlenet-output

mobilenet-output

alexnet-output shufflenet-full

squeezenet-full

squeezenet-output
densenet-output

alexnet-full vgg16-full

vgg16-output

googlenet-full

mobilenet-full

resnet18-full wide_resnet50_2-full
resnext50_32x4d-full

densenet-full

Model sizes and accuracies vs training time for smartphone_augmented

#params

7182

13438254

26869326

40300398

53731470

67162542

80593614

94024686

107455758

120886830

Figure A22. Accuracy vs, training time and model size for augmented smartphone data for one-
episode training.



Mach. Learn. Knowl. Extr. 2022, 4 40

References
1. Lundervold, A.S.; Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Fur Med. Phys. 2019,

29, 102–127. [CrossRef] [PubMed]
2. Pires de Lima, R.; Marfurt, K. Convolutional Neural Network for Remote-Sensing Scene Classification: Transfer Learning

Analysis. Remote Sens. 2020, 12, 86. [CrossRef]
3. Zou, M.; Zhong, Y. Transfer Learning for Classification of Optical Satellite Image. Sens. Imaging 2018, 19, 6. [CrossRef]
4. Abou Baker, N.; Szabo-Müller, P.; Handmann, U. Feature-fusion transfer learning method as a basis to support automated

smartphone recycling in a circular smart city. In Proceedings of the EAI S-CUBE 2020—11th EAI International Conference on
Sensor Systems and Software, Aalborg, Denmark, 10–11 December 2020.

5. Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; Morrone, B.; de Laroussilhe, Q.; Gesmundo, A.; Attariyan, M.; Gelly, S. Parameter-
Efficient Transfer Learning for NLP. arXiv 2019, arXiv:1902.00751.

6. Choe, D.; Choi, E.; Kim, D.K. The Real-Time Mobile Application for Classifying of Endangered Parrot Species Using the CNN
Models Based on Transfer Learning. Mob. Inf. Syst. 2020, 2020, 1–13. [CrossRef]

7. Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Transfer learning for time series classification. In Proceedings
of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018. [CrossRef]

8. Canziani, A.; Paszke, A.; Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications. arXiv 2017,
arXiv:1605.07678.

9. Bianco, S.; Cadene, R.; Celona, L.; Napoletano, P. Benchmark Analysis of Representative Deep Neural Network Architectures.
IEEE Access 2018, 6, 64270–64277. [CrossRef]

10. Socher, R.; Ganjoo, M.; Sridhar, H.; Bastani, O.; Manning, C.D.; Ng, A.Y. Zero-Shot Learning Through Cross-Modal Transfer.
arXiv 2013, arXiv:1301.3666.

11. Xian, Y.; Schiele, B.; Akata, Z. Zero-Shot Learning—The Good, the Bad and the Ugly. arXiv 2020, arXiv:1703.04394.
12. Lampert, C.H.; Nickisch, H.; Harmeling, S. Attribute-Based Classification for Zero-Shot Visual Object Categorization. IEEE Trans.

Pattern Anal. Mach. Intell. 2014, 36, 453–465. [CrossRef]
13. Zhang, Z.; Saligrama, V. Zero-Shot Learning via Semantic Similarity Embedding. arXiv 2015, arXiv:1509.04767.
14. Akata, Z.; Perronnin, F.; Harchaoui, Z.; Schmid, C. Label-Embedding for Image Classification. IEEE Trans. Pattern Anal. Mach.

Intell. 2016, 38, 1425–1438. [CrossRef] [PubMed]
15. Bart, E.; Ullman, S. Cross-generalization: Learning novel classes from a single example by feature replacement. In Proceedings of

the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26
June 2005; Volume 1, pp. 672–679. [CrossRef]

16. Fink, M. Object Classification from a Single Example Utilizing Class Relevance Metrics. In Advances in Neural Information
Processing Systems; Saul, L., Weiss, Y., Bottou, L., Eds.; MIT Press: Cambridge, MA, USA, 2005; Volume 17.

17. Tommasi, T.; Caputo, B. The More You Know, the Less You Learn: From Knowledge Transfer to One-shot Learning of Object
Categories. In Proceedings of the BMVC, London, UK, 7–10 September 2009. Available online: http://www.bmva.org/bmvc/20
09/Papers/Paper353/Paper353.html (accessed on 30 November 2021 ).

18. Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a Few Examples: A Survey on Few-Shot Learning. ACM Comput. Surv.
2020, 53, 63. [CrossRef]

19. Azadi, S.; Fisher, M.; Kim, V.; Wang, Z.; Shechtman, E.; Darrell, T. Multi-Content GAN for Few-Shot Font Style Transfer. arXiv
2017, arXiv:1712.00516.

20. Liu, B.; Wang, X.; Dixit, M.; Kwitt, R.; Vasconcelos, N. Feature Space Transfer for Data Augmentation. arXiv 2019, arXiv:1801.04356.
21. Luo, Z.; Zou, Y.; Hoffman, J.; Fei-Fei, L. Label Efficient Learning of Transferable Representations across Domains and Tasks. arXiv

2017, arXiv:1712.00123.
22. Tan, W.C.; Chen, I.M.; Pantazis, D.; Pan, S.J. Transfer Learning with PipNet: For Automated Visual Analysis of Piping Design. In

Proceedings of the 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), Munich, Germany,
20–24 August 2018; pp. 1296–1301. [CrossRef]

23. Montúfar, G.; Pascanu, R.; Cho, K.; Bengio, Y. On the Number of Linear Regions of Deep Neural Networks. arXiv 2014,
arXiv:1402.1869.

24. Kawaguchi, K.; Huang, J.; Kaelbling, L.P. Effect of Depth and Width on Local Minima in Deep Learning. Neural Comput. 2019,
31, 1462–1498. [CrossRef]

25. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif.
Intell. Rev. 2020, 53, 5455–5516. [CrossRef]

26. Hochreiter, S. The Vanishing Gradient Problem during Learning Recurrent Neural Nets and Problem Solutions. Int. J. Uncertain.
Fuzziness Knowl.-Based Syst. 1998, 6, 107–116. [CrossRef]

27. Srivastava, R.K.; Greff, K.; Schmidhuber, J. Highway Networks. arXiv 2015, arXiv:1505.00387.
28. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [CrossRef]
29. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 1097–1105. [CrossRef]
30. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.

http://doi.org/10.1016/j.zemedi.2018.11.002
http://www.ncbi.nlm.nih.gov/pubmed/30553609
http://dx.doi.org/10.3390/rs12010086
http://dx.doi.org/10.1007/s11220-018-0191-1
http://dx.doi.org/10.1155/2020/1475164
http://dx.doi.org/10.1109/bigdata.2018.8621990
http://dx.doi.org/10.1109/ACCESS.2018.2877890
http://dx.doi.org/10.1109/TPAMI.2013.140
http://dx.doi.org/10.1109/TPAMI.2015.2487986
http://www.ncbi.nlm.nih.gov/pubmed/26452251
http://dx.doi.org/10.1109/CVPR.2005.117
http://www.bmva.org/bmvc/2009/Papers/Paper353/Paper353.html
http://www.bmva.org/bmvc/2009/Papers/Paper353/Paper353.html
http://dx.doi.org/10.1145/3386252
http://dx.doi.org/10.1109/COASE.2018.8560550
http://dx.doi.org/10.1162/neco_a_01195
http://dx.doi.org/10.1007/s10462-020-09825-6
http://dx.doi.org/10.1142/S0218488598000094
http://dx.doi.org/10.1109/CVPR.2018.00745
http://dx.doi.org/10.1145/3065386


Mach. Learn. Knowl. Extr. 2022, 4 41

31. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9. [CrossRef]

32. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.
33. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5MB model size. arXiv 2016, arXiv:1602.07360.
34. Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings

of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 5987–5995. [CrossRef]

35. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
[CrossRef]

36. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

37. Zagoruyko, S.; Komodakis, N. Wide Residual Networks. arXiv 2017, arXiv:1605.07146.
38. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. arXiv

2017, arXiv:1707.01083.
39. Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard, A.; Le, Q.V. MnasNet: Platform-Aware Neural Architecture

Search for Mobile. arXiv 2019, arXiv:1807.11626
40. Zaheer, R.; Shaziya, H. A Study of the Optimization Algorithms in Deep Learning. In Proceedings of the 2019 Third International

Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 10–11 January 2019; pp. 536–539. [CrossRef]
41. Kaziha, O.; Bonny, T. A Comparison of Quantized Convolutional and LSTM Recurrent Neural Network Models Using MNIST. In

Proceedings of the 2019 International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al
Khaimah, United Arab Emirates, 19–21 November 2019; pp. 1–5. [CrossRef]

42. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Process. Syst. 2019, 32, 8024–8035.

43. Baker, N.A.; Szabo-Mýller, P.; Handmann, U. Transfer learning-based method for automated e-waste recycling in smart cities.
EAI Endorsed Trans. Smart Cities 2021, 5. [CrossRef]

44. Chen, L.; Li, S.; Bai, Q.; Yang, J.; Jiang, S.; Miao, Y. Review of Image Classification Algorithms Based on Convolutional Neural
Networks. Remote Sens. 2021, 13, 4712. [CrossRef]

http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/CVPR.2017.634
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/ICISC44355.2019.9036442
http://dx.doi.org/10.1109/ICECTA48151.2019.8959793
http://dx.doi.org/10.4108/eai.16-4-2021.169337
http://dx.doi.org/10.3390/rs13224712

	Introduction
	Summary of Related Learning Methods
	Zero-Shot Learning
	One-Shot Leaning
	Few-Shot Learning
	Transfer Learning

	Models and Datasets
	CNN-Design-Based Architectures
	Neural Network Architectures
	Datasets
	Hymenoptera
	Smartphone Dataset
	Augmented Smartphone Dataset


	Implementation
	Accuracy Density
	Accuracy and Model Sizes vs. Training Time

	Results
	One-Episode Learning
	Fine-Tuning the Full Layers
	Fine-Tuning the Classifier Layers Only

	Ten-Episode Learning
	Fine-Tuning the Full Layers
	Fine-Tuning the Classifier Layers Only


	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

