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Abstract. With the soaring popularity of electronic gadgets, Lithium-
Ion Batteries (LIB) have witnessed a remarkable surge. The inspiration
behind this study arises from the urgent need to automate the identifi-
cation of batteries in diverse contexts, such as electronic waste recycling
facilities or security screening at airports. Ultimately, it strives to mini-
mize health hazards associated with battery recycling by enabling more
accurate sorting with minimal human involvement. In this paper, we
applied double transfer learning to eight cutting-edge object detectors,
unlocking the potential of X-Ray images in recognizing and categorizing
electronic mobile devices (EMD) along with their embedded Lithium-Ion
batteries (LIB).
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1 Introduction

1.1 Problem Statement

The presence of such substances is noticeable in X-Ray images by darker color at
the location of the battery. Based on this fact, there are a couple of applications
that can benefit from detecting and sorting EMD and LIB. The usage of EMD
has increased significantly in recent years, and it can be concluded that the
number of disposals of these devices is also increasing. A study by [1] reported
that, before sorting and recycling batteries, each electronic device must first
be classified as to whether it contains batteries or not. In this process, there
is a proportion of devices where removing batteries is more difficult because
they have been glued or welded together. This results in considerable manual
time and expenses, and can also pose an increased health risk to personnel, e.g.
due to damaged LIBs. Recent research has already inspected that it is possible
to classify electronic devices by model on RGB images, capturing each device
from a top view and using a convolutional neural network for classification [2].
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Recognizing the model series can deliver exact information on the number, type,
and location of batteries inside the device, but it requires the neural network
to already know all possible device models found in the recycling facility, which
is why direct inspection of EMD internals using X-Ray images may be more
applicable. Another application is the security inspection of passenger baggage
of LIB to prevent potential risks of heating and burning during the flight [3].

1.2 Research Gap

Some of the main challenges that cause low recycling rates of Lithium are bar-
riers for sorting, disassembly, and pre-treatment steps, evoked by diversity and
non-standardization of LIBs [4]. Being able to detect and classify EMD and
LIB on X-Ray images using artificial intelligence, the electronic waste could be
processed more efficiently to improve the economical viability of recycling elec-
tronic waste. To ensure the passengers’ safety within an aircraft for example
in the USA, the Federal Aviation Administration states that EMD should be
kept in carry-on baggage and, if stored in checked baggage, should be packed
to protect them from any outer damage [5]. Utilizing state-of-the-art (SOTA)
object detection methods in this use case could enhance the speed and quality
of baggage inspection. To our knowledge, none of the previous works tested You
Only Look Once (YOLO)v7 [6], YOLOvVS8 [7] or vision transformer models in
detecting EMD and LIB on X-Ray images.

Section 2 investigates related work and the SOTA of deep learning approaches
to object detection. Section3 describes the datasets preparation and model
implementation in detail. Then, in Sect.4 model performance is compared, and
the impact of employing double transfer learning is analyzed. Finally, the exper-
imental results are discussed, and future prospects are suggested.

2 State of the Art

2.1 Related Work

In addition to our previous work, which will be described in Sect. 2.2, two other
publications have addressed the detection of EMD or batteries on X-Ray images.
The work by [8] introduced the HiXray dataset, which will also be briefly
presented in Sect. 2.3, along with the Lateral Inhibition Module. With the mod-
ule being detached from deep learning models and backbone structures, it can
be integrated into existing architectures to enhance a model’s performance. The
HiXray dataset was tested using three different types of deep learning mod-
els: Single Stage Detector (SSD), Fully convolutional one-stage object detection
(Fcos), and YOLOvV5s [9]. The results show that the suggested module improves
the mean Average Precision (mAP) of each of the existing models by an average
of 1.5% and achieves the best MAP of 96.8% when combined with YOLOv5.
The authors of [1] deal with the detection and classification of batteries in
the context of automating electronic waste recycling. For the experiment, 532
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objects of electronic waste were imaged with a Computed Tomography scanner
to visualize the batteries within, regardless of external dirt or damage to the
object. Each of the 943 batteries was manually labeled, each assigned to one
of six battery types, including prismatic and pouch lithium-ion batteries among
others. The YOLOv2 model with a LightNet backbone was used for the detection
and evaluated by the precision, recall, and the Fl-score. The precision of just
classifying whether or not an electrical device can be seen on an X-Ray image
is 89% and the precision for detecting batteries within the image is 82% for the
pouch LIB class and 75% for the cylindrical LIB class.

2.2 Motivation

In our previous work [10], we tested the detection of EMD and LIB using
YOLOv5m [9] and the HiXray dataset. Multiple transfers of weights are uti-
lized to detect the EMD and LIB, achieving a precision of 0.94 for detecting
EMD and 0.935 for detecting LIB. It is also noted that the performance signifi-
cantly improves when applying a second knowledge transfer for LIB detection in
X-Ray images. Building upon this finding and utilizing the same database, this
study incorporates the transfer of weights from the EMD detection task to the
LIB detection task. However, the previous work was limited to YOLOv5m only
and therefore was bound to the performance of a 1-Stage detector model, which
was designed for real-time object detection tasks [9].

2.3 Public X-Ray Datasets

X-Ray image datasets related to object detection include, SIXray [11], OPIXray
[12], PIDray [13], HiXray [8], and GDXray Baggage [14]. Solving our problem
requires a dataset with appropriate object classes to detect EMD and LIB in X-
Ray images. Furthermore, it should have a sufficient number of samples since the
batteries contained in EMD appear smaller in relation to surrounding objects
and are more difficult to identify. To present an overview of recent X-Ray datasets
for object recognition, Table1 compares their numbers of images and classes”
for improved phrasing and readability.

2.4 Methods of Object Recognition

In the past, object recognition models were traditionally categorized into two
types: two-stage and one-stage models. In 2020, a new technique called “End-to-
End Object Detection with Transformers (DETR)” was introduced [15]. By uti-
lizing the transformers’ self-attention mechanism, these models can put objects
in a global context of the image and create relationships between them, which
helps in finding the final bounding box and classification decisions. Recent SOTA
examples of object detection models employing the transformer architecture are
the Swin transformer [16] or DINO models [17].
This work tested 8 object detection models, as shown in Table 2.



178 D. Rohrschneider et al.

Table 1. Public X-Ray datasets (MD classes are written in bold)

Dataset

Number of images

Classes

SIXray

1,059,231

Gun, Knife, Wrench, Pliers, Scissors,
Hammer

OPIXray

8,885

Folding Knife, Straight Knife,
Scissors, Utility Knife, Multi-tool
Knife

PIDray

47,677

Gun, Bullet, Knife, Wrench, Pliers,
Powerbank, Baton, Lighter,
Sprayer, Hammer, Scissors,
Handcuffs

HiXray

45,364

Portable Charger 1, Portable
Charger 2, Mobile Phone,
Laptop, Tablet, Cosmetic, Water,
Nonmetallic Lighter

GDXray Baggage

8,150

Handgun, Razor Blade, Shuriken,
Pen Case, Clip, Spring, Door Key,
Knife

Table 2. Comparison of models with pre-trained weights

Technique 2-Stage | 1-Stage Transformer
Model Faster |SSD YOLO | YOLO |YOLO Efficient | Casc. | DINO
R-CNN | Lite vHm v7i W6 | v8 Det D1 | Mask |4scale
(18] [19] [20] R-CNN
Backbone Res Mobile | YOLO | E-ELAN | Darknet -53 | Efficient | Swin-S | Swin-L
Netb0 | Net v2 | vh Net-bl
BiFPN
#M Parameters | 29.162 |4.475 |21.2 70.4 25.9 6.6 107 218
COCO mAP 29.3 29.1 45.4 54.9 50.2 38.4 51.9 58.0

3 Materials and Methods

3.1 Selection of Models and Dataset

Models. To compare the impact of transfer learning on the detection of LIB on
X-Ray images among the three object detection strategies presented in Sect. 2.4,
at least one SOTA model was selected for each approach for the experiment.
Considering the limited computing time and capacity available in practical sce-
narios, the models are selected to achieve a trade-off between computational cost
and prediction accuracy. To perform double transfer learning, it is necessary to
have access to pre-trained weights from a large and high-quality dataset that is
publicly available.
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Dataset. To choose a suitable database for this benchmark, the datasets com-
pared in Table 1 were evaluated based on the number of samples and the EMD
classes present. The HiXray dataset was selected among them, because it con-
sists of more than 45,000 images in total and 5 different classes of EMD, while
the other X-Ray datasets have, at most, one EMD class. It is not publicly avail-
able but can be obtained for academic purposes upon request. The set comes
with images saved in JPG format and has an average resolution of 1,200 x 900
px, but they vary from image to image. The images are divided into two sets,
with 36,295 assigned to the training set and 9,069 to the test set, resulting in a
ratio of approximately 4:1. The bounding boxes for each image were manually
annotated for the eight different object classes. The descriptions of these bound-
ing boxes are provided in separate text files that correspond to the respective
images. On average, there are 2.27 classes per image, indicating that multiple
objects can be assigned to the eight object classes [8].

3.2 Dataset Preparation

The HiXray dataset consists of five EMD classes, namely portable chargerl,
portable charger2, mobile phone, laptop, and tablet, “as well as three additional
classes: water, cosmetic, and non-metallic lighter”. Since this work focuses on the
detection of EMD and batteries, retaining these three classes might adversely
affect the results, thus, they are initially excluded from the label files. For the
first dataset shown in Fig. 1(a), 12,000 annotated samples and 2,000 unannotated
samples are used for the training split, while 3,000 annotated samples and 500
unannotated samples are used for the testing split, all derived from the original
HiXray dataset. Noting that the “Mobile Phone” class has the biggest number
of occurrences, which poses a challenge in achieving a balanced distribution.
The second dataset was manually derived as a subset of the remaining images
for the battery contained in the EMD. As previously indicated in our previous
work [10], the three different LIB classes, namely ‘Prismatic LIB,” ‘Cylindrical
LIB,” and ‘Pouch LIB,” were found across different EMD classes, regardless of

a) Dataset 1 (Devices) b) Dataset 2 (Batteries)
#Samples #Samples
Train 12000 2000 Min. 1 class Train 1600 300 Min. 1 class
‘ No class
Test 3000/ 500 D Test 37575
#Class instances #Class instances
P.C.1 8610 2161 Pris. 454I -
P.C.2 5395 1350 s
e Train Train
Pouch
M. Phone 16400 4032 2156 567

LIB

LIB
Laptop \223;3)686 . Test . . Test
1486 426

Cyl.
Tablet 1527 414

Fig. 1. Distribution of samples and class instances per dataset
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their brand or model series. The ‘Pouch LIB’ appears in ‘Mobile Phone’, ‘Laptop’
and ‘Tablet’, ‘Prismatic LIB’ could only be found inside ‘Portable chargerl’
and ‘Cylindrical LIB’ was found to appear in ‘Portable charger2’, as well as
in some instances of the ‘Laptop’ class. As a result, 300 samples containing
only the class ‘Portable Charger2’ and three times 300 samples containing only
the classes ‘Mobile Phone’, ‘Laptop’ and ‘Tablet’ are created, along with 400
samples containing only the class ‘Portable Chargerl’ since the prismatic LIB
appears only once per instance. Another 300 samples without any annotations
are added too. The testing set is created likewise, making up a total of 1,900
training and 450 testing samples, which then are manually annotated by drawing
a bounding box around each battery instance and discarding the EMD classes.
To increase the number of training samples, two augmentations are applied per
image, including horizontal flipping and cropping with a zoom rate of 0-50%.
The entire process is implemented using Roboflow [21] and the results in the
train-test-split are visualized in Fig. 1(b).

3.3 Setting up the Environment

For the implementation, Google Colab Pro+ is used. To train and evaluate the
chosen models with pre-trained weights and the custom dataset, we utilized the
official code repositories published by the authors. These repositories offer pre-
pared scripts, which are used to perform the training using equal hyperparame-
ters and the evaluation with equal metrics described in the following sections.

YOLO. As stated in Table 2, three models from the YOLO family were tested
in this study: YOLOv5m [9], YOLOv7-W6 [6] and YOLOv8m [7]. Since the
dataset format is the same for all three models, our two datasets were exported
only once using RoboFlow [21].

TensorFlow Object Detection API. To prepare Faster R-CNN [18], SSD
Lite [19] and EfficientDet D1 [20] for the training and evaluation in Google
Colab Pro+, the TensorFlow Object Detection API [22] is used. The original
repository provides a wide range of object detection models and pre-trained
weight checkpoint files trained on the COCO 2017 dataset. To simplify the use
of the framework, the dataset needs to be converted to the TF-Record format.
This format is compatible with the RoboFlow [21], making the conversion process
seamless and efficient.

SWIN. With the release of Swin Transformer [16], the Microsoft research team
made the source code available, including training scripts and pre-trained weights
from the ImageNet-1K dataset [23]. The toolbox requires the dataset to be in
COCO-JSON format, which is also supported by RoboFlow.

DINO. The researchers of [17] also published their code based on PyTorch via
GitHub along with the weights checkpoint obtained from training on the MS
COCO dataset. The pre-trained weights file for the Swin-L backbone needs to
be downloaded separately from the official Swin transformer repository, which is
also used above. DINO also excepts the dataset to be in COCO-JSON format,
which had already been exported before.
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Hyperparameters. The entire experiment was conducted using one Google
Colab Pro+ notebook per framework. This setup ensures that all tests are con-
ducted on a Tesla T4 GPU with 15 GB of RAM on two Intel(R) Xeon(R) CPUs
@ 2.30 GHz sharing 52 GB of RAM. To ensure a fair comparison of the tested
object detection models, the hyperparameters are fixed before starting the exper-
iments and then passed to each configuration file. The input image size is set to
640x640 Pixels, the optimizer used was the Stochastic Gradient Descent (SGD),
the initial learning rate was set to 0.01 with cosine decay, the confidence thresh-
old during training to 0.001, and Intersection over Union (IoU)-threshold was set
to 0.7 for the anchor-based models. Momentum is used with a 3 value of 0.937,
along with the three warm-up epochs for learning rate and momentum term.
The number of training epochs is fixed at 20 for fine-tuning on the first and 30
for fine-tuning on the second dataset while early stopping was used to ensure
generalization. Considering the varying sizes of models and datasets, as well as
the restricted resources in Google Colab Pro+, the batch size for each training
was determined based on the capacity of GPU memory. Details on these will be
described in Sect. 4.3.

4 Evaluation

4.1 Evaluation Metrics

The performance evaluation of each object detection model was conducted using
the original repositories and the COCO API package [24]. The COCO API pro-
vides access to commonly used metrics, including mAP@0.5 and mAP@0.5:0.95
per category. The numbers following the @Q-symbol denote the IoU threshold
used to calculate the mAP. The notation 0.5:0.95 indicates that the average
mAP is calculated for each IoU threshold between 0.5 and 0.95, with a step size
of 0.05. Therefore, the mAP@0.5:0.95 is a more critical metric as it measures
the accuracy of predicted bounding box coordinates in relation to the ground
truth, often resulting in lower values compared to mAP@Q.5. The early stopping
method was utilized, and the epoch number at which the highest evaluation

Transfer Learning Flow

Pre-Train First Finetune Second Finetune

ﬂw Weight Transfer EI Weight Transfer

o MS COCO / ImageNet e HiXray Dataset (First) * HiXray Dataset (Second)
¢ Detect Common objects ¢ Detect EMD ¢ Detect LIB

Fig. 2. Visual summary of the finetuning process applied to each model. The two
weight transfers are colored red. (Color figure online)
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score was achieved, was recorded. Additionally, the inference time was measured
in milliseconds, and the mean epoch time was measured in hours. These metrics
were compared by considering the batch sizes used for each training.

4.2 Evaluation Strategy

After setting up all the frameworks and datasets, the pre-trained models are
fine-tuned on the first dataset for 20 epochs. At this point, the first knowledge
transfer from the general task of detecting common objects within the MS COCO
dataset to the specific task of detecting EMD on X-Ray images is performed, as
can also be seen in Fig. 2.1. The COCO evaluation metrics are calculated on the
testing split after each training epoch and displayed in the console. Additionally,
a checkpoint file is created after each epoch, and the early stopping method is
employed to select the checkpoint state with the highest average mAP across
all classes for the second training, detecting three classes of batteries on X-
Ray images. For this, the second dataset, which was introduced in Sect. 3.2,
is uploaded into the notebooks. Next, the training is started using the same
hyperparameters, the best checkpoint file from the previous training, and setting
the epochs to 30. By doing so, the second knowledge transfer takes place by using
the weights from the task of detecting EMD on X-Ray images and finetuning
each model to predict bounding boxes for the batteries inside of the EMD. This
transfer of weights is pointed out in Fig.2.2. Once again, the evaluation metrics
are computed after each epoch and the training is stopped when there are no
significant improvements in the average mAP across all classes. Following each
training iteration in the experiment, an additional evaluation is conducted on
the testing set using a batch size of 1 to obtain mAP values for a valid model
comparison. Furthermore, the final training speed is calculated by dividing the
elapsed time taken to reach the best checkpoint by the number of epochs. Finally,
if the framework does not display the inference time per image, an individual
image inference is performed to measure the time in milliseconds per image.

4.3 Benchmark Results

Detection of EMD. Table3 displays the evaluation results for the detection
of EMD on X-Ray images.

Table 3. Results from the first transfer: Detecting EMD on X-Ray images

Model mAP@ 0.5 | mAP@ 0.5:0.95 | Batch size | Best epoch | @ Epoch time | Inference time
YOLOv5m 0.968 0.605 32 20 0.13 h 17 ms
YOLOv7-W6 0.969 0.598 16 20 0.078 h 13.6 ms
YOLOv8m 0.973 0.585 32 20 0.28 h 15 ms

SSD Lite 0.941 0.471 16 20 0.135 h 35.1 ms
EfficientDet D1 0.939 0.425 8 20 0.407 h 68.7 ms
Faster R-CNN 0.96 0.59 4 20 0.262 h 110.6 ms

Cas. Mask R-CNN (Swin-S) | 0.959 0.581 4 20 2.33h 57 ms

DINO (Swin-L) 0.976 0.562 2 8 3.73 h 700 ms




Double Transfer Learning X-Ray Batteries 183

As shown in Table 3, the models achieved a minimum mAP@O0.5 of 0.939
when predicting EMD on X-Ray images using their pre-trained weights. The
DINO model with a Swin-L backbone performs the best out of the eight models,
with a value of 0.976, and thus having an average miss-prediction rate of 2.4%.
DINO achieves its best evaluation results at epoch 8 of 20 and attains the highest
mAP@Q.5 among all the experiments. On the other hand side, DINO can only
be trained with a batch size of 2, resulting in the longest average epoch time
of 3.73 h and the slowest inference speed of 700 ms per image. This happens
due to its big number of parameters, which were compared in Table 2. Similarly,
the Cascade Mask R-CNN model with Swin-S transformer backbone has the
second-longest average epoch time of 2.33 hours but is more than 12 times faster
than DINO when it comes to a single image inference. In contrast to this, the
2-Stage detector Faster R-CNN with a ResNet50 backbone shows up nearly 10
times smaller average epoch time and higher mAP scores, but an inference speed
almost twice as long. Among the 1-Stage detectors, the YOLO models, despite
having fewer parameters, can compete with the larger vision transformer mod-
els in terms of mAP results. Each of the three tested YOLO models achieved
higher mAP@0.5:0.95, could be trained with larger batch size, and exhibited
faster epoch and inference times compared to the transformer models. In par-
ticular, the recently published model YOLOv8m could achieve a mAP@Q.5 of
0.973, exhibiting only 0.31% lower accuracy and more than 46 times faster when
performing a single image inference compared to the DINO vision transformer.
Furthermore, the YOLO models surpass the other 1-Stage detectors (SSD-Lite
and EfficientDet-D1) in terms of mAP@0.5, mAP@0.5:0.95, and inference time.

Detection of LIB. Table4 shows the evaluation results for the detection of
LIB on X-Ray images.

Table 4. Results from the second transfer: Detecting Batteries on X-Ray images

Model mAP@ 0.5 | mAP@ 0.5:0.95 | Batch size | Best epoch | @ Epoch time | Inference time
YOLOv5m 0.928 0.746 32 30 0.021 h 18 ms
YOLOv7-W6 0.932 0.731 32 30 0.033 h 13.5 ms
YOLOv8m 0.94 0.753 32 24 0.06 h 14.8 ms

SSD Lite 0.827 0.516 16 30 0.074 h 30 ms
EfficientDet D1 0.86 0.547 8 30 0.207 h 50 ms

Faster R-CNN 0.863 0.551 4 30 0.198 h 109 ms

Cas. Mask R-CNN (Swin-S) | 0.944 0.72 8 20 0.245 h 67 ms

DINO (Swin-L) 0.947 0.727 2 3 2.82 h 660 ms

Using the weights from the first training to train the models on detecting the
three LIB classes in X-Ray images, the results are noted in Table4. It is worth
mentioning that the second dataset contains fewer samples than the first, as
previously shown in Fig. 1. Therefore, the batch size could be raised in the cases
of YOLOv7-W6 and Cascade Mask R-CNN with Swin-S backbone. A similar
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pattern to the results in Table3 can be observed in the current table. Starting
with the DINO model, it is able to achieve the highest mAP@0.5 score with
0.947 at the early epoch of 3, which is also the highest value among all models.
Following closely, the second vision transformer model, Cascade Mask R-CNN
with Swin-S backbone, achieves a mAP@Q.5 value of 0.944 at the 20th epoch.
Interestingly, its average epoch time is less than one-tenth of DINO’s average
epoch time, likely due to the fact that the batch size in the second training is
twice as large as in the first training. The 2-Stage model Faster R-CNN remains
the second slowest model when it comes to the inference per image speed and
is, along with SSD-Lite and EfficientDet-D1, almost 10% less precise than the
YOLO and vision transformer models in terms of both mAP categories. Among
the YOLO models, YOLOv8m achieves the highest mAP@0.5 of 0.94 and out-
performs all other models with a mAP@0.5:0.95 of 0.753. On the other hand, it
has the slowest average epoch time compared to YOLOv7-W6 and YOLOv5m
in both experiments but is still faster than the remaining five models. Moreover,
the mAP@OQ.5 values, particularly for SSD-Lite, EfficientDet-D1, and Faster R-
CNN, are lower than in the first training with the task of detecting EMD on
X-Ray images and the mAP@0.5:0.95 values are higher. One possible reason for
this is the presence of smaller and more occluded object instances, such as the
cylindrical LIBs. Figure 3 emphasizes this aspect in a side-by-side comparison of
three original images from the dataset.

Prismatic LIB Pouch LIB Cylindrical LIB

Fig. 3. Side-by-side comparison of the three different battery instances (Marked by red
rectangles and arrows). (Color figure online)

To further investigate this phenomenon, Table5 provides a closer examina-
tion of the mAP values, along with the average image proportion of a bounding
box per category.

It is noticeable, that the cylindrical LIB is not predicted as accurately as the
other classes in terms of mAP@0.5:0.95 for all models. Table 5 provides additional
details on why the three models mentioned earlier achieve significantly lower
mAP results. SSD Lite, EfficientDet-D1, and Faster R-CNN achieve a maximum
score of 0.753 for mAP@0.5 and 0.361 for mAP@0.5:0.95. Since the cylindrical
LIB is approximately one-third the size of the other two classes, meaning that
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Table 5. Comparison of bounding box proportion and mAP per class

Pouch LIB Prismatic LIB Cylindrical LIB
Dbox/image 1.69% 1.68% 0.57%

mAP@ 0.5 mAP@ 0.5:0.95 | mAP@Q 0.5 | mAP@ 0.5:0.95 | mAP@ 0.5 | mAP@ 0.5:0.95
YOLOv5m 0.966 0.816 0.901 0.799 0.917 0.624
YOLOv7-W6 0.975 0.809 0.894 0.785 0.926 0.6
YOLOv8m 0.962 0.806 0.922 0.814 0.936 0.638
SSD Lite 0.91 0.595 0.904 0.622 0.667 0.33
EfficientDet D1 0.929 0.642 0.948 0.696 0.703 0.303
Faster R-CNN 0.923 0.627 0.912 0.665 0.753 0.361
Cas. Mask R-CNN (Swin-S) | 0.964 0.767 0.935 0.793 0.934 0.601
DINO (Swin-L) 0.958 0.78 0.969 0.815 0.913 0.586
Average 0.948 0.73 0.923 0.749 0.844 0.505

a single instance’s bounding box makes up only 0.57% of the image it is found
in, there could be a close relationship to the models detecting them with less
precision. However, the other models can overcome this obstacle, with YOLOv8m
reaching a maximum score of 0.936 mAP@0.5.

4.4 Double Transfer Learning

To address the question of how well the double transfer learning applies to the
task of detecting EMD and LIB on X-Ray images, the loss function trend of all
the 8 individual trainings is visualized in Fig.4. The loss values are normalized
to a range between 0 and 1 for each model using Min-Max-Normalization, which
involves taking the minimum and maximum values from the combined set of
EMD and LIB training losses. The loss graphs displayed in blue correspond to the
first training to detect EMD, while the red graphs represent the second training
to detect LIB. This benchmark evaluates a total of eight different models, with
each model having one blue and one red graph, resulting in a total of 16 loss
graphs displayed in Fig. 4.

Training loss comparison

0,8

0,6

0,4

Normalized Loss

0,2

0,0

== Devices == Batteries

Fig. 4. Comparison of normalized training loss between detecting devices and batteries
(Color figure online)
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The graphic demonstrates that during the first training, the majority of loss
values are higher compared to the second training after transferring weights for
the second time. Additionally, it can be observed that in most of the red graphs,
the initial loss value in epoch 1 is lower. This suggests that reusing weights
from the first training on EMD leads to lower losses and, consequently, higher
prediction accuracy values at the early stage of the second training. This gradual
introduction allows the model to learn to detect more specific and smaller object
categories, such as the LIB within the EMD. This is particularly useful for vision
transformer models, as they typically require a substantial amount of data to
achieve performance comparable to convolutional neural networks [25]. Transfer
learning, or in this case, double transfer learning, can help to reduce the amount
of data needed for object recognition from a new context.

5 Summary and Outlook

In summary, it is possible to outperform the SOTA in detecting EMD and LIB on
X-Ray images using pre-trained models, regardless of whether a 1-Stage, 2-Stage,
or vision transformer model is employed. The results in Sect. 4.3 demonstrate
that, with the utilization of double transfer learning, a mAP@0.5 value of 0.947
after the third training epoch in the case of DINO could be achieved. This can be
a significant advantage if the training process of a complex model is computation-
ally expensive and there are limited resources available for the task of detecting
batteries whether in a recycling facility or at an airport security control. The
use of multiple weight transfer, particularly in the case of vision transformers
such as Swin or DINO, shows promise as a method to address the challenge
of requiring extensive data for training these types of models. Furthermore, it
has become evident, that the YOLO models, especially YOLOv8m, can achieve
nearly equal performance with a tenth of the number of parameters compared
to DINO, resulting in a more than 45 times faster single image inference speed.
Although our previous work [10] demonstrated the positive impact of double
weight transfer on LIB detection in X-Ray images, certain models, notably SSD-
Lite, EfficientDet-D1, and Faster R-CNN, faced challenges in detecting smaller
cylindrical LIB instances. This consideration is crucial in tasks such as auto-
mated battery sorting or security inspections. On one hand, it could be a limi-
tation that there is no guarantee that every EMD or LIB is correctly identified
on an X-Ray image. On the other hand, relying solely on manual inspection by
humans can also result in errors and incorrect decisions. Therefore, it becomes
crucial to establish precise criteria in the future for determining the required
level of accuracy for neural networks.

For future work in this field, there are several avenues to explore for improving
performance. Firstly, utilizing the entire HiXray dataset, as well as considering
other versions of the specific model series, can provide more comprehensive and
diverse training data, potentially leading to enhanced performance. Additionally,
upgrading to better hardware resources can also contribute to more efficient
training and inference processes. Furthermore, a new dataset with real X-Ray
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images of electronic waste can be created, which can be beneficial for the context
of automating battery sorting in recycling facilities. Object recognition using
machine learning models could also act as a part of an EMD or LIB detection
pipeline, in which multiple sensors like serial number detectors or tools for weight
and chemical composition analysis are combined to improve performance and
stability. Lastly, the classification of smartphone model series using deep learning
was also covered in previous research [2], and finding an appropriate combination
of these techniques could result in more efficient solutions, as well as a lower
health risk for the human being.
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