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Abstract—We present a new RGB-D database for multi-pose
object recognition tasks. With the help of a multi-axis rotation
framework, we are capable of capturing depth and color data of
arbitrary small objects from virtually any viewpoint. In addition,
recording is performed in a nearly lossless fashion, avoiding
typical bleeding artifacts present in related reference data bases.
This contribution presents the main advantages of our setup
and contrasts it against other reference data bases. Furthermore,
it outlines possible use cases and application scenarios of our
data set and is complemented by experiments with standard
machine learning techniques used in, e.g., object recognition tasks
within the robotics domain. The experiments demonstrate the
validity of our data base as they corroborate that viewpoint
variance is indeed an important factor to take into account for
object detection, which, from our perspective, is sometimes not
considered at the required level. Detection accuracy is high if
samples can be trained on data taking into account as many
viewpoints as possible.

I. INTRODUCTION AND RELATED WORK

When dealing with the problem of instance-based object
recognition, one has to simultaneously take into considera-
tion various factors on many different levels such as sensor
technology/quality, algorithm design and, last but not least,
environmental factors. The latter comprise difficulties arising
from illumination, object occlusion or, within the domain of
robotics, difficulties resulting from data acquisition by an
autonomous agent. In such a scenario, one possible desired
goal for a robot is to find and precisely locate instances
of a target or known item, for example in order to pick it
up or to process the information further. However, it is not
always a simple task to achieve, due to occlusions, imperfect
data or even multiple instances appearing in the scene. In
order to separate the impact of each of these factors from
the performance of learning algorithms for object recognition,
reference databases containing near-perfect data are required.
Such databases allow to benchmark a given learning algorithms
separately from any preprocessing steps that may be necessary
to attenuate environmental factors. As a consequence, the
availability of reference databases has grown in recent years,
keeping track with advances in sensing technology. With the
advent of accurate and cheap RGB-D sensing technology, the
construction of reference databases for object recognition from
RGB-D data has become a major requirement for advances
in RGB-D object recognition. However, existing databases
typically share the drawback of lack of diversity with respect to
object viewpoints, and moreover suffer in terms of data quality
due to the way in which the data is acquired. Typical solutions
to these problems include a multi-sensor setup to induce

greater viewpoint variance, as well as data post-processing
algorithms which can alleviate the flaws in data recording.

In this contribution, we present a data recording design
overcoming these flaws simultaneously by its simple yet effec-
tive setup, allowing for fully automated object data acquisition
resulting in superior data quality. The design itself consists of
a rotational arm capable of securing target objects by nylon
wire while being able to fully rotate around two different
axes. Data is recorded with a single camera at a fixed position
in near-range taking color and depth snapshots at equidistant
time-intervals. In this way, virtually any small object can be
recorded from any viewpoint without any intermediate human
intervention, leading to almost perfect data snapshots (no seg-
mentation step necessary to separate object from background)
and a high number of possible objects.

This contribution is laid out as follows: In Section II
begin by describing the most important work related to the
field of object recognition from data-driven approaches based
on reference databases available online. Subsequently, the
specific contribution of the recording setup along with its main
advantages presented in this paper is described in Section
III. The details and and system overview are then provided
in Section IV. Section V presents the means by which data
is acquired along with the most important technical specifi-
cations. Subsequently, the resulting database is described in
detail in Section VI. In order to get a grasp on how to use this
dataset as a reference, benchmark tests have been conducted
and the most important findings are presented in Section VII.
Conclusively, we provide a summary of this contribution in
Section VIII along with an outlook on possible applications
and future work.

II. RELATED WORK

Databases typically aim at providing a large number of
instances organized within a certain taxonomy in order to
maintain the diversity necessary for algorithm development and
testing. To this end, usually an automated system is set up in
such a manner that a single object can be placed into a certain
scene for recording and subsequent post-processing of data.
Here lie some of the potential pitfalls, as the algorithms de-
veloped for this post-processing are designed to perform some
form of object-background cropping which is a non-trivial task
in nearly all cases, and rather a research topic of its own.
The Washington RGB-D dataset consists of 300+ common
household objects organized into 51 categories [1]. Samples
were recorded with a Kinect-style camera with the objects
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placed on a turntable. To induce viewpoint variance the camera
was moved to different heights for each of the three recordings
per object. As can be seen from the samples included in the
datasets, due to imperfect object-background cropping, parts of
the objects are missing in nearly all cases. This is undesirable
as incomplete samples do not reflect the real-world scenario
well and moreover are prone to errors. The viewpoint variance
realized by the camera shift is limited to three different angles
and does not provide an exhaustive description of the included
samples in terms of both depth and RGB data. The BigBIRD
database contains data samples from 125 different objects at
this time of writing [2]. RGB data is present in the form
of 12 megapixel images while depth data is available in the
form of point clouds recorded with a Carmine 1.09 sensor.
The number of instances is large, albeit much inferior to the
aforementioned set. Its main benefit are the high resolution
images and the added viewpoint variance which mainly comes
from setting up five different cameras, which however remain
in a fixed position. This allows for an easy and precise mesh
reconstruction of objects, but still does not densely cover
the viewpoint angles of an object. Furthermore, it suffers
from the ”bleeding” of the surrounding environment during
recording. This is mostly resolved by a post-processing step,
however significant artifacts remain attached to the object’s
data points. Lastly, camera calibration is necessary for this
setup in order to achieve precise measurements. The interfer-
ence between IR patterns is avoided by time-multiplexing, i.e.
turning cameras on one at a time. In order to increase viewpoint
variance for the specific task of hand gesture recognition
the authors of [3] propose the variation of the objects, i.e.
hands, themselves. This is a feasible approach for this specific
task as, during the recording of the database, the participants
are instructed to translate and rotate the hand to induce as
much variance as possible. This is, however unfeasible if
object cropping has to be taken into account by the post-
processing algorithms which typically leads to imperfect data
samples. Other approaches, such as MOPED [4] provide high
quality images of a large number of object instances. However,
while facilitating high-res cameras is a valid approach, it
is difficult to perform comparisons between systems making
use of commodity hardware available in standard RGB-D
sensors. The Willow Garage Dataset provides 160 frames of
household objects taken recorded with a first-generation Kinect
and providing 6DOF poses for each object. Along with the
aforementioned problems of object segmentation and minor
viewpoint variance, cumbersome checkerboard calibration has
to be implemented increasing the risk for potential errors.
Typical (other) drawbacks therefore are calibration difficulties,
few object samples, low data quality, minor viewpoint variance
or low-resolution data [5], [6], [7].

III. CONTRIBUTION AND NOVELTY

In this contribution, a novel data recording technique is pro-
posed for establishing a database aimed at instance recognition
from RGB-D data. The unique characteristic of our approach
is its setup, as it allows for a viewpoint variance at a scale not
present in current publicly available data sets. The framework
permits recording from any desired angle, with possible angle
step sizes as small as 4 degrees. This is more than sufficient to
achieve multi-pose recordings for common object recognition
problems or mesh reconstruction techniques.

Furthermore, a depth segmentation technique is imple-
mented allowing for almost lossless object recording via
volume of interest (VOI) cropping. Thereby, various difficulties
are avoided such as bleeding, environmental reflections or
other artifacts, resulting from, e.g., imperfect segmentation of
objects standing on a turntable. The sensor coming to use is
pre-calibrated for RGB and depth data, therefore color and
depth data points can be mapped to a single resulting RGB-D
point cloud.

IV. SYSTEM OVERVIEW

The system operates on a revolving plate onto which the
rotating frame is set up (cf. Figure 1). Each object is chucked
with nylon cords into the frame’s rotating arm. This arm is
mounted to the main frame’s vertical axis allowing to perform
full 360 degree rotations for the objects by varying the polar
angles. A stepper motor, attached to the bottom part of the
main frame’s axis, controls the arm’s step-wise rotation. The
revolving rotation of the platform is realized via a second
stepper motor, which is mounted to the side of the platform.
The cogwheel attached to the stepper motor bites into the large
cogwheel (on the floor) which in turn is fixed around the main
platform. This way, precise steps can be performed by the
system with a precision of up to 4 degrees in azimuthal angle
steps.

As this setup needs to freely rotate in both angular direc-
tions, an own power source is placed onto the rotating platform
and moreover a wireless connection needs to be established
to take and transmit snapshots after each rotation step. The
stepper motor responsible for the rotation of the platform
is connected and controlled by an Arduino microcontroller.
This, in turn, is connected via USB to a Raspberry Pi com-
puter responsible for the system control on the platform and
maintaining the Wifi connection to the camera system, which
is responsible for the recording. The power source on the
platform allows for an operating time of several hours. During
a recording session, each object is fixed in place by three nylon
cords which results in a stable positioning of the object during
the rotation phase. Slight vibrations from the arm rotation are
partially passed on to the object, however do not affect the
quality of the recording as a fixed ’pre-recording delay’ can
be defined in which vibration can die down. Moreover the
nylon cords are thin and translucent hence do not appear in the
resulting snapshots. The camera is positioned at approximately
the same height as the target object’s centroid and remains
fixed for the setup.

V. DATA RECORDING

Data is recorded via the Creative Gesture Camera (cf.
Figure 2) from a fixed position. Each snapshot results in a
640x480 RGB image and a 320x160 depth image recorded by
its Time-of-Flight (ToF) sensor, also denoted point cloud (PC).

For each object, we assume its centroid being at a fixed
position and fixed distance in the area in front of the camera.
A VOI is assumed in between the frame’s arms and all data
points contained within the VOI are extracted and saved. The
difficulty is to extract the valid data points from the whole
point cloud. For certain angles, the frame’s arm moves in
between the camera and the target object, thereby obstructing
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Fig. 1: The current system setup: Objects are spanned into an
arm able to perform full 360◦rotations. The whole construction
is driven by small stepper motors allowing for the arms
to shift in 4◦angle steps. An own power source is placed
onto the rotating wheel while the an RGB-D camera (in the
background) takes snapshots after each step.

the recording. These snapshots can easily be detected by a
distance thresholding and are subsequently removed from the
database. Additionally, the arm is coated with a sheet of
distinct color allowing for refined differentiation between valid
and non-valid (i.e. artifacts, outliers) data points. The more
difficult cases are reflections caused by the frame itself in those
cases in which the rotation of the arm caused its own position
to possibly be within the VOI. This can be circumvented
on the one hand through simple color cropping or, for the
more difficult cases, by a specifically designed tree-cropping
algorithm.

The main idea of tree-cropping algorithm is to obtain all
data points belonging to the object, while removing all outliers
and artifacts. The data is cropped using a tree originating from
the suspected (0, 0, 0) reference point of the object’s origin.
Paths are established by propagating from the existing leafs of

Fig. 2: The Creative Gesture Camera, capable of recording
RGB images at a resolution of 640× 480 and depth images at
a resolution of 320 × 160 at a frame rate of 30 Hz.

the tree to the nearest neighbors. All points which cannot be
connected through a path fulfilling the necessary criteria are
cropped. The main criteria consist of a minimum threshold for
the individual distance between 2 points in the tree, Θ2

min,
and a threshold for average distance between n-points of the
tree Θn

avg . In order to maintain the database at a manageable
size, we initially configure the angle steps in such a way as to
produce roughly 100 snapshots per object: Snapshots are taken
after 36 degree rotations for both the polar and the azimuthal
angles, i.e. the arm and the platform each perform 10-step
rotations. More precisely, the arm performs a full 3D rotation
of the object in polar angle direction in ten steps, after which
the platform rotates 36 degrees in azimuthal angle direction
(also 10 times in total). This yields 100 sample snapshots for
every object after which the cropping algorithm reduces the
set to contain only valid samples (i.e. removing those with too
many artifacts).

VI. THE DATABASE

The database consists of 60+ sample objects and will be
constantly extended. It mainly contains objects from indoor
environments, grouped taxonomically with a special focus on
the usability for robotic applications. Objects having roughly
the same shape and color characteristics from all angles (e.g.
a ball) will also be included, however with only few reference
samples, as they do not provide a large data variety. At the
current state of recording, three taxonomic groups are included
in the database: toys, kitchen objects and miscellaneous. The
latter contains objects which cannot be properly assigned to
any group, however may well be present in a household
scenario. Due to the need to maintain the stability of the setup,
there is a natural weight and size limit for the recording of an
object.

Figure 4 shows a sample recording of a toy bridge in ten
different azimuthal angles φ, completing a full rotation around
the z-axis. Each image is color coded with green data points
being closer to the camera setup and orange/red points being
further away. Depending on the angle of the object towards the
camera, more or less noise is visible per snapshot, as e.g. in
the top row in the third and fourth sample from the left. This is
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Fig. 3: Sample set of household objects taken from the kitchen
set (top row) and the miscellaneous set (bottom row).

the result of a depth recording with a ToF sensor as less light
is reflected back directly towards the camera, and therefore
measurements become less precise. Moreover, the quality of
ToF depth measurements depends on the object’s distance from
the sensor - the further away the object is, the less precise the
measurements can be. Another factor having a possibly strong
impact on the quality is an object’s reflection coefficient. This
coefficient defines the amount of light reflected from an object
back towards the light source (in this case the sensor’s NIR
light emitter), hence a low coefficient may be responsible for
imprecise measurements.
The rightmost sample in the top row is an unrecoverable
artifact due to either to much noise stemming from the
frame, or the frame itself being (partially) in the field of
view (FOV) of the camera. All snapshots are saved and
provided as .pcd files containing both the depth and the color
information. Additionally we provide the raw scenery data
as well as the RGB and color coded depth files separately.
This allows for easy integration into the well-known and
established point cloud library (PCL) [8]. The advantage of
our approach is that we provide high-quality RGB-D data,
recorded with up-to-date sensing hardware, from virtually any
desired viewpoint, allowing to analyze and benchmark state-of-
the-art machine learning and computer vision approaches in a
systematic fashion. The main drawback of other approaches is
contained in the cropping process and the limitation of angular

perspectives which our system alleviates in many aspects.
The combination of VOI depth cropping and the aforemen-
tioned tree-cropping algorithm yields very satisfactory point
clouds along with the RGB data also containing the noise
stemming from a typical sensor recording. No other data
cropping scheme is required other than those described in this
section yielding improved results in terms of data quality as
other objects in comparable reference databases require either
e.g. further post-processing or object-background seqmentation
techniques. Other approaches setting up similar databases
usually struggle with the cropping process, as each object is
placed on some kind of platform which results in the need
to segment it from the underlying plane. This subsequently
makes it difficult to find precise cropping techniques and yields
imperfect shape/color structures with potentially misaligned
points. Moreover, the surrounding environment always reflects
a certain amount of light onto the object, merging and therefore
corrupting the reference objects. This is not the case for our
setup as we make sure each object is attached freely to the
frame with a minimum distance to any surrounding nearby
object.
In addition, we approximately overcome the problem of angle
restriction, prevalent in some form in all other databases. The
usual approach is to provide a variation by repositioning the
camera in a certain angle or by setting up several cameras
at once. Either way, the limitations are severe as the number
of angles is significantly smaller and moreover potentially
cumbersome to vary. Any manual change in camera angle is
furthermore prone to de-calibration errors which is not the case
for the automated setup presented in this contribution. This is
significant as one cannot rely on algorithms working robustly,
since objects in a real-world scenario cannot be expected to be
found in a certain angular arrangement, but are rather scattered
in manifold ways. Our database provides the possibility to
robustly verify such algorithms for e.g. robotics applications.
Obviously, our approach has limitations as well, most notably
the fact that most but not all viewpoints are possible, due to
the setup shown in Figure 1 where the arm can appear between
object and camera although this happens very rarely as the arm
is rather slim. Furthermore, an object must lend itself to being
attached by nylon wire, which is however the case for the vast
majority of household objects.

Figure 5 analogously shows the RGB images for a toy
horse available in our database, along with the sensor noise
and the framework artifacts not yet removed (top row, sample
4 + 5) and displayed for sake of completeness. Aside from the
noise stemming from the frame itself, which will be removed
after tree-cropping, sensor noise will naturally remain in the
sample recording itself. Due to the fact that the employed sen-
sor is already calibrated, any further calibration is unnecessary
for our setup.

VII. BENCHMARK EXPERIMENTS

We conduct some experiments using a simple multilayer
perceptron (MLP) with three hidden layers to analyze the
object samples in our data base. To this end, 10 objects are
selected from the database and are denoted as follows: 0 - toy
bridge, 1 - toy cow, 2 - toy cube, 3 - toy basket, 4 - misc box,
5 - toy duck, 6 - misc cylinder, 7 - toy horse, 8 - toy rabbit, 9
- misc spoon. Each of these classes contains several different
instances of the same class. We employ a 3D shape descriptor
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Fig. 4: Sample rotation of a toy bridge in ten different azimuthal angles. Depending on the angle of the object more (Snapshot 3,
top row) or less (Snapshot 1, top row) are present. These outliers are imprecise measurements as the quality of ToF data heavily
depends on the distance of the object as well as its relfection coefficient. The topmost sample represents an artifact unavoidable
as the rotating arm interferes with the object’s VOI during data acquisition. This sample will be removed and is not present in
the database.

introduced in [9] which has yielded stable and robust results
for several 3D shape recognition tasks so far. It is based on
the 3D shape descriptor presented in [10] which, at its core,
describes the relationship of 2 points in a point cloud by their
respective tilt, yaw and pan angles. The functionality of the
shape descriptor is not the core aspect of this contribution,
therefore we point to the mentioned publication for further
in-depth questions. The size of the input layer of the MLP
corresponds to the size of the resulting descriptor (here: dim
= 625), the number of hidden neurons remains at 70 (numbers
empirically selected) and the number of neurons in the output
class corresponds to the number of instances (here n = 10). In
the classification phase, the neuron with the highest activation
corresponds to the classified class. Training is conducted using
the FANN library[11] with standard parameters and sigmoid
activation functions. The training algorithm is RProp.

bdg cow cube bskt box duck cyl hrs rbt spn
bdg 11 0 3 0 4 1 3 1 1 0
cow 1 16 1 0 0 0 0 5 1 0
cube 6 0 17 0 0 0 0 0 1 0
bskt 0 1 1 20 0 0 0 0 0 0
box 2 0 2 0 20 0 0 0 0 0
duck 1 2 1 0 1 16 0 1 2 0
cyl 0 0 0 0 0 0 23 1 0 0
hrs 2 3 0 0 2 1 0 13 3 0
rbt 0 1 1 0 0 2 1 2 17 0
spn 0 0 0 0 0 0 0 0 0 24

TABLE I: Confusion Matrix for MLP testing with 70 hidden
neurons and an overall accuracy of 74% (abbrv. for conve-
nience)

Table I shows the results as a confusion matrix of a trained
MLP with 70% of the data samples used for training and
30% of the data samples left for validation. As we have 100
raw data samples per object in our data base, removing those
samples which contain artifacts or parts of the frame itself
results in less than 30 samples for testing. Each entry (i, i)
in the matrix represents the number of correctly classified
samples for this object while each entry (i, j) (with i unequal
j) in every row represents the number of samples which were
mistakenly classified as class j. The overall classification rate is
at around 74% which is satisfactory for an unoptimized model
with respect to its parameters for a problem of 10 classes. It can
be seen that objects with similar shape are frequently mistaken
for each other, e.g. row 2 where the toy cube is mistaken for
the toy bridge on 6 occasions. Contrary the spoon (class 9) is
classified correctly in all of the cases (100% recognition rate).

bdg cow cube bskt box duck cyl hrs rbt spn
bdg 12 2 2 1 1 2 4 0 3 3
cow 2 16 0 0 0 3 2 4 2 1
cube 6 2 19 0 1 0 0 2 0 0
bskt 0 2 1 22 0 2 0 0 0 0
box 3 1 0 0 22 0 0 1 2 1
duck 1 0 1 1 1 19 2 1 3 1
cyl 1 0 1 0 0 0 27 0 0 0
hrs 3 9 0 0 1 1 0 14 2 0
rbt 2 3 0 0 0 0 1 3 19 2
spn 0 0 0 0 0 2 0 0 0 28

TABLE II: Confusion Matrix for MLP testing with 70 hid-
den neurons and an overall accuracy of 66% (with artifacts)
(hidden=70) (abbrv. for convenience)
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Fig. 5: RGB snapshots of a toy horse in our database viewed from ten different azimuthal angles. Note the artifacts before
applying the cropping algorithm on the raw data (upper row, fourth sample). Again the fifth sample in the top row represents
an irrecontructable sample which will be removed from the database.

Consequently, as more samples remain in the training and
testing set, the classification rate drops to 66% as indicated by
Table II. The number of misclassified objects varies in both
experiments shows that the uniqueness of an object results
in higher accuracy (see object 9 in both tables). Moreover,
similar objects are often mistaken for each other (object 0 and
2). Additionally, an in-depth analysis of the results reveals
that misclassifications occur when the model could not be
trained on samples displaying a certain characteristic of an
object (such as a handle of a mug) as these features naturally
cannot be learned. This is the main point for the introduction
of viewpoint variance as presented in our database.

VIII. SUMMARY AND OUTLOOK

In this contribution we present a publicly available bench-
mark database for RGB-D object instance recognition consist-
ing of 60+ common household objects, which will be extended
constantly by new objects, by our own initiative and upon
request by other researchers. Each object is recorded with the
Creative Gesture Camera resulting in RGB images of 640×480
resolution and ToF-based depth images of resolution 320×160.
Each object is furthermore recorded with a step-wise variation
of the viewpoint angles in azimuthal and polar coordinates
of 36 degrees each, resulting in 100 snapshots per object.
Invalid samples, e.g. due to artifacts or partial occlusion, are
removed by a tree-cropping algorithm and complemented VOI
cropping, yielding efficient object instance samples. With the

construction described in this contribution we aim at estab-
lishing the single largest RGB-D database allowing extensive
and precise algorithm development and testing, specifically
targeted at indoor applications with a special focus on robotic
scenarios. The experiments conducted for this contribution
hint at the very obvious, but frequently omitted fact that
viewpoint variance is indeed an important factor to be taken
into account for creating object recognition models. The main
shortcoming of related RGB-D reference databases is, to a
large extent, the fact that near-perfect scenarios, i.e., limited
viewpoint variations, are assumed. However, in a real world the
positioning and alignment of objects within the environment
cannot be predicted and has therefore be taken into account
in all variants, when designing algorithms for any such task
aimed at object manipulation.
We believe that our database represents a novel contribution for
tasks such as robotic perception, instance recognition or ma-
chine vision in general. It has the potential to function as a new
reference database providing additional benchmarks in areas
such as computer vision or object recognition/reconstruction
specifically due to the fact that we cover almost all viewpoint
of an object exhaustively. The high-quality data cropping to
depth segmentation supplements this novel database.
All data sets along with a documentation will be made avail-
able under www.gepperth.net/alexander/rgbd.php. Additional
software and benchmark results will also be made available
as part of the future work following this contribution.
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