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Abstract—Transfer Learning methods aim to reuse previously
acquired knowledge about a source task to facilitate learning
of a target task. In this paper, we present a Meta Learning
approach to find optimal hyperparameters for Transfer Learning
processes given previously known metadata about the source task,
the target task, and the pre-trained model. We collected metadata
and model parameters from more than 15,000 Transfer Learning
processes in a dataset, which we use to learn metamodels
that predict a Transfer Learning process result in terms of
accuracy on the validation sets, given prior information such
as the number of epochs, learning rates, optimizers, etc. Using
feedforward multilayer perceptrons (MLP), we show that and
how our approach finds efficient hyperparameters for Transfer
Learning for image classification.

I. INTRODUCTION

With the increasing popularity of Deep Learning,
new applications arise as new data becomes available.
However, optimizing deep neural networks can take a
lot of computational time and thus energy when learning
from scratch. With Transfer Learning methods, we seek to
reduce this cost by reusing previously acquired knowledge
to facilitate the learning problem and thus speed up the
underlying computational process. However, the problem
of model selection and hyperparameter selection for the
Transfer Learning process remains and still requires expert
knowledge to find useful learning processes. We address the
problem of model selection and hyperparameter selection with
Meta Learning based on metadata from Transfer Learning
processes. Our approach uses multilayer perceptrons (MLP)
to approximate quantities we know after a Transfer Learning
process, e.g., the accuracy on the validation set, given relevant
information we know in advance. Since this means that we
can use fewer computational resources to systematically
achieve good Transfer Learning results, it also means that
we need to use less electrical energy to perform our Deep
Learning computations, ultimately reducing carbon dioxide
emissions for computing.

With the methodology summarized in Figure 1, we seek
to answer the research question of whether we can use a
systematic Meta Learning procedure to obtain suggestions
for Transfer Learning processes that lead to better results
than simply using the best performing setting so far or a
prediction by linear regression. In order to answer the research
question, we first created a meta dataset of 15,972 Transfer
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Fig. 1: The methodical sequence of our studies in the form of
a flowchart.

Learning processes and then examined the learnability of the
recorded relationships by conducting a total of 10,402 Meta
Learning experiments, which we evaluated and compared to
the baseline. We conclude that our Transfer Meta Learning
approach constitutes a promising contribution. To the best of
our knowledge, we designed a novel approach, which relies
on the fundamental idea to collect useful metadata from
Transfer Learning processes in the first place and then use
them to estimate better hyperparameters than the current state
of the art.

Contribution: Motivated by the open questions from [I]
concerning optimal Transfer Learning parametrization, we
present a systematic approach to optimize Transfer Learning
processes. We work on a tool that can answer the question of
which model leads to high accuracies under which Transfer
Learning parameters with knowledge of metadata alone, so
without knowing any actual samples from the target task’s
dataset. This tool should reduce the need for expert knowledge
for the application of Transfer Learning and contributes pro-

4471



posals to finding better learning processes than straightforward
methods. In this paper, we limit our investigation to the image
classification problem and the Transfer Learning method of
fine-tuning only, but we can well imagine applications of the
underlying approach to other problems of Machine Learning.
Our contribution differs from related research, which we
discuss in Section II, first of all in the research question
but also in the concrete implementation. In section III, we
detail the methodology we use to build our dataset that we
conduct Transfer and Meta Learning experiments with. After
discussing the results of our experiments in relation to our
objective in section IV, we limitations and future work in
section V.

II. RELATED WORK

Transfer Learning: In Transfer Learning methods,
Machine Learning models use knowledge from a source
domain to enhance, accelerate, or stabilize learning in a target
domain [1], [2], [3], [4], [5], [6], [7]. The idea of Transfer
Learning also relates to the concepts of Continual Learning
[8], Multitask Learning [9], Semi-Supervised Learning [10],
[11] and Knowledge Distillation [12], [13]. Depending on the
application, different Transfer Learning techniques suit use
cases, for instance Few Shot Learning for classification tasks
[14] or Reinforcement Learning tasks [I5], robotics [16],
[17], person identification [18], [19], finding visual analogies
[20] as well as Adversarial Reprogramming [21] and Natural
Language Processing [22]. Catastrophic forgetting, a well-
studied problem of Transfer Learning, makes it difficult to
learn knowledge of the target domain while maintaining
knowledge of the source domain [23], [24], [25]. To name
some useful applications of Transfer Learning, for example,
it helps to reduce the overexploitation of natural resources by
supporting circular economy [26], [27], it helps in medical
imaging and diagnostics [28] and in work safety [29], [30].

Meta Learning: For our purposes, the concepts of Meta
Learning deal with how a machine learns Machine Learning,
i.e., what methods with what hyperparameters lead to good
results [31], [32]. The general concepts also apply to other
fields; for example in Natural Science, applications that
learn to transfer simulation settings from metadata save
computational time and energy [33], [34], [35].

Transfer Meta Learning: The current state of the art
already knows several approaches that combine the concepts of
Transfer Learning and Meta Learning. In the context of Deep
Learning, learning generalized meta representations can help
to find highly transferable parameter vectors for Zero-Shot and
Few-Shot approaches [36], [37], [38], [39], such that we can
also consider meta representation learning itself as a method
of Transfer Learning. The search for a good Representation
Learning algorithm led to a benchmark for Transfer Learning,
the Visual Task Adaptation Benchmark (VTAB) [40]. In an
application concerning adaptive beamforming optimization for
a signal processing problem, the combination of Transfer and

Meta Learning helps to solve the problem of performance
deterioration when the testing environment changes [41]. An-
other approach uses the idea of Meta Learning kernels to chain
transformations to help a Transfer Learning to quickly learn
new target tasks [42]. A demonstration of a Transfer Meta
Learning ensemble with fast sigmoidal regression models that
outperform state-of-the-art approaches on a certain data set
uses evolved hierarchical ensembles as building blocks for
Meta Learning [43]. Information theory considerations explore
the limitations of Transfer Meta Learning in the form of a
meta learner knowing data from source tasks while evaluating
the performance on new target tasks and conclude that upper
bounds for of Empirical Meta-Risk Minimization lie in the
average generalization gap, the high probability Bayesian
bounds and the high probability single draw bounds [44].

III. METHOD

Our method, which we refer to as Transfer Meta Learning,
starts with a set of pre-trained models that we wish to fine-
tune to a set of tasks and ends with metamodels that we use
to map the resulting a priori and the a posteriori metadata.
With it, we aim to systematically achieve Transfer Learning
proposals better than simply using the best-known settings, as
motivated in [1], or the ones we would derive by using linear
regression. Therefore, we perform a grid search of Transfer
Learning processes and record the individual outcomes and
relevant metadata. Figure 1 provides a brief overview of the
process and interrelationships of our studies. Based on these
metadata, we perform Meta Learning to obtain metamodels
that predict the a posteriori information about the Transfer
Learning processes, such as the accuracies on the respective
training, validation and test sets of the target task, given the
a priori knowledge, such as the identity of the model, the
number of parameters, statistical properties of the task label
space and hyperparameter settings. The general method may
extend to the use of further a posteriori variables, for example
training and inference times or confusion matrices.

A. Transfer Learning

Tasks: As source task for all experiments, we use ImageNet
[45]. In our Transfer Learning processes, we used the follow-
ing target tasks to calculate a knowledge transfer from the
source task to the target task:

o t1: CIFARIO [46]

e to: MNIST [47]

o t3: FashionMNIST [48]

o t4: Places365 [49]

e 15,6: Smartphones (original and augmented) [27]

¢ t7: Hymenoptera (from a PyTorch [50] tutorial)

Models: We use the following pre-trained models, as im-
plemented in PyTorch [50] and pre-trained on the source task,
for our Transfer Learning processes:

e my: AlexNet [51], [52]

e TNo: VGG-16 [ ]

o mg: GoogLeNet [54]

e my: ResNetl8 [55]
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: SqueezeNet [56]

: DenseNet [57]

: ResNext [58]

: MobileNetV2 [59]
: Wide ResNet [60]

e mig: ShuffleNet [61]

e m11: MnasNet [62]

For each of these models, we examine the fine-tuning of the

entire parameter vector and only of the classifier part, so that
the models mi9.92 contain the classifier parts of the original
models. If a model has no separate classifier part assigned to
it, we use the last fully connected layer instead.
Transfer Learning dataset assembly: For our Meta Learning
experiments, we assembled a dataset containing samples of
Transfer Learning processes in various value ranges. The main
part of our dataset consists of the task vector {¢1,t2, t3,t5,¢7},
on which we performed Few-Shot Transfer Learning, using
the optimization algorithms Adam [63], RMSProp [64] and
plain stochastic gradient descent in all combinations with
both cross entropy and negative log-likelihood loss as opti-
mization criteria. We calculated each of these combinations
with learning rates n € {1073,107%,1075}, number of
epochs n. € {1,2,3} and batch sizes b € {25,50}. This
part of the dataset amounts to a total of 11,880 Transfer
Learning processes. For each of these processes, we also
have saved the resulting neural network parameter vector,
totaling in about 1.67'B of model data for future research.
For another part of our Transfer Learning dataset, we collected
metadata by fine-tuning each of our 22 vision models on the
task vector {t1,t9,ts,15,ts,t7} with different learning rates
n € {1,0.1,0.01,1073,1074,1075} and number of epochs
e € {1,3,5,7,10}, but using only the Adam optimizer with
cross entropy loss, resulting in a total of 3,960 Transfer
Learning processes. Furthermore, to have a barely transferable
task, we added data from Transfer Learning processes to the
hard target task ¢4 (Places365), calculated with learning rates
n € {1,..,1075} in a one-episode setting using the Adam
optimizer and cross entropy loss, thus adding another 132
samples to our dataset.

B. Meta Learning

Metadata set: For each Transfer Learning process, we
collected metadata containing both the settings of the Transfer
Learning hyperparameters and the corresponding training and
validation accuracies, as well as the corresponding training
and testing time in seconds, the confusion matrices, and
the memory usage on the device. The Transfer Learning
hyperparameters include the loss function L, the optimizer o,
the batch size b, the normalized number of epochs n. and the
normalized number of Transfer Learning model parameters
n, alongside their model identity m;. From the task and
model metadata, we also know the number of parameters and
statistics about the task, such as the number of data points
ng, the number of classes n., and the stochastic moments
of the label space ui,. 4. We divided this 15,972 Transfer
Learning process meta data sets into training and validation

data and expanded it so that each of the tasks also poses a
completely unseen test task, thus testing the generalization
capability on data not included in the Meta Learning process.
From the training meta data set, we sample batches of size
100 at random. We model only the a posteriori variable of
validation accuracy in the target task, given different input
configurations of the metamodel, but do so with numerous
combinations of optimization algorithms, criteria and Meta
Learning hyperparameters, as described in section IV. For
a statistically meaningful study, we ran each Meta Learning
trial ten times with different random initial weight vectors
but used only the best meta-model from the ten trials for
evaluation. To avoid overfitting in Meta Learning, we use
early stopping.

Metamodel architectures: Our feedforward MLPs feature
an output neuron Y, which tries to match the validation
accuracy, with a sigmoid activation function. In the hidden
layer, which we vary in our experiments as described in
section IV, we employ tanh() as activation function. The
input layer includes the metadata as described by the various
input configurations.

Input configuration representations: We represent opti-
mization algorithm and the optimization criterion as one-hot
encoded binary vectors, for example we encode our three
optimization algorithms as:

[0,0,1]:  Adam
0; =1410,1,0] : RMSProp 1
[1,0,0: SGD

In the same way, we proceed with the representation of the
optimization criterion and each of our 22 model identities;
for m; we set the first bit of the vector to 1, for model 125
the twenty-second bit. We normalize the numbers of model
parameters, data points, classes, batch sizes and epochs across
the maximum of all corresponding values in the training data
set.

IV. EXPERIMENTS

With our experiments we want to answer several questions;
on the one hand we would like to know how good our method
behaves compared to simple approaches. Since none of the
known state of the art methods apply to our problem in this
form, we compare the proposals of our method with simple
approaches of linear regression and using the best Transfer
Learning process known from the training set. On the other
hand, we investigate the influences of different input data for
the metamodels and address the question of whether there exist
universally good parameters for our Meta Learning needs.

A. Experimental setups

We evaluated experimental setups using various input con-
figurations with the a priori variables that we know of before
the corresponding Transfer Learning process started in order
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have a comparison to simply using the best-known model or
using the approximation of a linear regression.

Common input variables: All input layer configurations c;
include the normalized batch size b, the normalized number of
epochs n., the normalized number of Transfer Learning model
parameters n,. Also, each ¢; contains and the learning rate 7
as a floating-point number as well as the loss function L, the
optimizer o and the model identity m; encoded as a one-hot
binary vectors. We found that not including these variables
lead to worse results, so we find a minimal working config-
uration in ¢y = {b, n,np,n, L, 0,m;}. For our investigations
on the effect of stochastic moments of the label distributions,
we denote the mean value of the source task as j11, and the
mean value of the target task as pq,. Likewise, we denote the
standard deviations as pg_, po,, the skewness as ps_, w3, and
the kurtosis as 44, or p4,. In short, we refer to the stochastic
moments as fi1.2,34 and to the number of datapoints and
classes as n. and ng, since we always use the source and
target task values together.

Differences between input configurations: While configura-
tion ¢; additionally contains the ratio of the number of classes
and data points r, and r4 between the source and target task,
co contains the number of data points and classes in source
and target tasks ng,, n4,, Ne,, N, instead. Configuration
c3 features both representations of these quantities. We add
kurtosis to ¢, to obtain ¢4 and add skewness to ¢4 to obtain cs.
Additionally, cg contains the ratios and c7 the first stochastic
moment, which we would interpret as an encoding for the
task identity at this point. The configuration cg also takes the
standard deviation into account, cg extends this list with the
data and class ratios.

B. Results
Quality measure: We consider the average loss reductions

of ten Meta Learning trials

LS[J/I‘
§ = 100 =start

— 100[%) 2)
end

on the validation, training, and test metadata sets as
a measure of the quality of our Meta Learning process.
If the Meta Learning procedure had not reduced loss, so
Lstart = Lend, this would result in § = 0%; with a loss
reduction from L4 = 1 to Lepg = 0.5, we would find
0 = 100%. We chose the loss reduction rate ¢ instead of
the mean average percentage error (MAPE) because we
want to evaluate the Meta Learning processes themselves,
independent of the loss function and metamodel performances.

Maximum loss reductions: First, we look at the maximum
values of § in table I and which metamodel configurations
and hyperparameters for learning achieved them and find
substantial loss reduction for certain configurations. For
the training set, we find the metamodel configuration with
the largest loss reduction in cs. In detail, configuration cs
achieves the maximum loss reduction Otrqin,,.., = 219%
with a loss function L = L2, a learning rate n = 1073,

c 5valmaw 5t7‘ainmaz 5testmam
cy | 188.12% 200.55% 182.2%
c5 162.07% 209.71% 201.96%
c2 137.23% 138.37% 152.79%

TABLE I: Top three maximum loss reduction in percentages.

c 5'Ual 6t7‘ain 5tcst
cs | 31.01% 42.27% 10.87%
c5 29.32% 42.29% 11.56%
c2 29.32% 38.67% 9.31%

TABLE II: Top three mean loss reduction in percentages.

a number of epochs n. = 20 and a number of hidden
neurons 7, = 100 with the optimizer o = RMSProp on a
training set consisting of the tasks Hymenoptera, MNIST,
FashionMNIST, Smartphones (original and augmented)
and Places365. For the validation metadata set, we
find an optimum at &,q,,,, = 177% with the input
configuration ¢ = c4, the Meta Learning hyperparameters
{L = L2,n = 1073,n. = 30,n, = 100,0 = RMSProp},
as validated on metadata from the MNIST, Hymenoptera,
Smartphones (augmented and original), Places365 and
FashionMNIST tasks. When looking for the maximum loss
reduction on the test datasets, the metamodel configuration
¢ = c¢5 achieved a loss reduction 6yq4,,,, = 206% with
{L = L2,n = 1073, n, = 20,n, = 100,0 = RM Sprop}
for the FashionMNIST test task and the training/validation
datasets with CIFAR10, MNIST, Hymenoptera smartphones
(augmented and original) and Places365. From that
observation we conclude that our Meta Learning processes can
best assess the characteristics of a Transfer Learning process
to the FashionMNIST target task, given the experimental
setup as presented before.

Average loss reductions: Although we recommend the
metamodels with the maximum values in the loss reduction
for estimating the parameters for Transfer Learning and use
them later for evaluation, we still try to answer the question
which hyperparameters lead to a successful Meta Learning
process. In the search for a Meta Learning process with
good generalization ability, we do not look at maximum
values, but for robust hyperparameters that perform well in
all combinations of training, validation, and testing datasets.
In that sense, table II confirms above average performances
of the input configurations ¢4 and cs. This suggests that
the normalized number of classes and data points may lead
to better predictions than using the corresponding ratios.
Furthermore, we see that using the third and fourth stochastic
moments as input variables has a positive effect on the
mean loss reduction, but that the first and second stochastic
moments seem to distort the learning process, since we
actually find loss increases in c7, cg and cg when using
mean and standard deviation as inputs. We find this rather
counterintuitive, as we suspected that the label means would
implicitly encode the tasks in such a way that metamodels
could become absurdly accurate, but instead we found that
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L o 6val 6157‘0,1',71 (stest

L2 RMSProp | 31.82% 46.29% 6.92%
L2 SGD 24.12% 30.48% 8.23%
L1 RMSProp | 18.45% 25.02% 1.67%

TABLE III: Top three mean loss reductions in percentages for
meta model optimizers.

np Te n 6val 6t7‘ain 6test
100 30 107 | 30.8% 41.9% 10.9%
100 20 10~ | 28.4%  38.3%  10.6%
500 30 107% | 246% 35.7% 4.4%

TABLE IV: Top three mean loss reductions in percentages for
meta model architectures.

too large an input value negatively affects gradient descent.

Universally good parameters: We detail the most promis-
ing Meta Learning hyperparameters and architectures in tables
IIT and IV to find universally useful Meta Learning settings.
Table III shows, that the optimization criterion L = L2 and
the optimization algorithm o = RMSProp achieve the highest
scores, averaged over all training and validation trials. To
our surprise, the optimization algorithm o = SGD with the
optimization criterion L = L2 achieves the highest mean
values on the test dataset. We suspect this to have happened
by chance and would not assign statistical significance to the
small difference, given the significantly worse performance
on the training and validation data. In further search of
what neural architectures give rise to metamodels with high
generalization power, we can see in table IV the best results
on the training, validation and test data set for 100 hidden
neurons with a training time of 30 epochs at a learning rate
of 1074, averaged over optimization criteria, algorithms and
input configurations. We note with interest that increasing the
number of neurons in the hidden layer of the metamodel does
not lead to higher learning successes, since metamodels with
100 neurons already represent the facts in the best possible
way.

C. Test set evaluations

Test setup: To check the validity of our metamodels
and compare them to the aforementioned baselines, we
choose an easy test task (FashionMNIST) and a hard test
task (Places365) to query the metamodels for a one-episode
Transfer Learning setting. We setup the training data such
that the metamodels we use for inference had not seen any
data from the respective test task during training or. We
present the solutions that have the highest loss reduction on
the test data set and derive the estimated accuracy for learning
rates 7 € {0.1,1073,107%,107°}, for all models my.o2, all
optimization algorithms and optimization criteria, given the
required and previously known metadata, such as the skewness
and kurtosis of the label space, the normalized number of
classes and data or the class and data ratios respectively.
As we want to infer parameters for a one-episode Transfer
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Fig. 2: Metamodel inferences (left) compared with the actual
model accuracies (right) on the corresponding test tasks data
from FashionMNIST (top) and Places365 (bottom).

Learning process, we set n, = 1—10, as we had a maximum
value of ten for the number of epochs in the training data and
we want to find out the performance after one episode. We
set the normalized batch size value to b = 1.0 and compare
the predictions of the metamodel with the actual Transfer
Learning results from the test data set, as shown in Figure 2.

Evaluation of estimated accuracies: In the corresponding
graphs in Figure 2, we see that the metamodel differentiates
the expected accuracy in terms of learning rates and model
identities for the easy task better than for the difficult task.
Furthermore, we recognize smooth trajectories, which we
consider as confirmation of Meta Learning success, since
no random jumps occur in the predictions. This shows a
successful metalearning process, but on the other hand, it also
shows that the prediction quality decreases as the target task
becomes more complex. Comparing the predicted and actual
accuracies directly for a choice of optimizer and criterion,
we see in Figure 2 that the metamodel could reproduce the
model accuracies about the learning rates for the easy task
in a practically useful way; i.e., for the trajectories m; and
mo compared to the trajectory msoo. The hard task contains
a jump at a learning rate of 7 = 1073, which the metamodel
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rank  acc m; n o L

1 93.7% | mg 10-5  Adam CE
24 926% | mz 107® RMS CE
46 91.0% | ma 10-°> RMS CE
58 90.3% | miz 107®  Adam CE
537 7.7% mio 10~*  SGD CE

TABLE V: Actual test results for the FashionMNIST task,
ranked by accuracy. Our method in bold letters, the best-known
approach in blue and the linear regression proposal in teal.

rank  acc m; n o L

1 51.91% | m7 10-5 Adam CE
7 47.5% mgy 105 Adam CE
13 45.95% | m13 107®  Adam  CE
85 17.2% may 10-*  Adam  CE
141 0.26% mig 1.0 Adam CE

TABLE VI: Actual test results for the Places365 task, ranked
by accuracy.

could not anticipate.

Baseline comparison: To compare our Transfer Meta
Learning method with the straightforward usage of the best
setting known from the training metadata set and a proposal
by linear regression as trained on the training metadata set as
well, tables V and VI list the test results for all optimization
algorithms and criteria. For a fair comparison, the linear
regression baseline incorporates the same input variables as
configuration c5. As a straightforward baseline, we simply use
the best configuration that we found in the training data set.
Both baselines do not know data from the test set. In table V
we can see that the metamodel has indeed proposed a decent
configuration, which resulted in a higher test rank than we find
for the baselines. The outcome for the hard task in table VI
confirms the advantage of using a MLP prediction instead of
a linear regression or simply the best-known approach, as it
also performed better than the baselines in this case. We would
reason that the characteristics of the hard task made it difficult
to estimate Transfer Learning settings this task properly from
the rest of the dataset and account for this behavior with an
insufficient reflection of the necessary values in the training
data.

V. DISCUSSION
A. Limitations

Initially, our system underlies the same vulnerabilities as
other Deep Learning systems and, if trained with harm-
ful metadata, would propose inefficient Transfer Learning
methods that reflect the training data. The limitations of
our method lie in universal function approximation general
or Deep Learning in particular. Especially in applications
involving Continuous Learning, this general weakness can

lead to a self-reinforcing problem. From information theoretic
considerations, we find that the upper bounds as elaborated
in [44] also apply to our method. We see the small number
of target domain tasks as a limitation of the experiments
we presented, considering that we only used one source
task. Although the few task combinations already produced
numerous Transfer Learning processes, more source and target
tasks would certainly improve our Meta Learning processes.
Another limitation of our experiments lies in that we only
predict accuracy on the validation set of the target task. While
we also recorded accuracy on the training set, learning times,
inference times and memory usage, we leave the examination
of the prediction of these values to future research.

B. Future work

First, we would like to state that in our next articles we
will explore the applicability of our Transfer Meta Learning
method to related learning problems, such as image seg-
mentation [65] or image reconstruction [066], as well as to
visual Reinforcement Learning [67]. In addition, we collected
training accuracies, confusion matrices, resource utilizations,
and timing information from our Transfer Learning processes
and plan to explore the impact of predicting these data in terms
of additional losses. We also ask to what extent the application
of the Meta Learning method to the metadata created by Meta
Learning could help our approach to make more accurate
predictions. We will also include Transfer Learning methods
other than fine-tuning, such as Elastic Weight Consolidation
[24], Incremental Moment Matching [25] or Progressive Neu-
ral Networks [16]. These future studies would then include
other types of Neural Networks, such as Variational Autoen-
coders, Long Short-Term Memory or Generative Adversarial
Networks. After examining all of these effects and methods
in our Transfer Meta Learning approach, we plan to conduct
a baseline study with other benchmarks, such as VTAB [40],
Causalworld [68], or cardiovascular disease recognition [69].

C. Conclusion

We proposed a new approach to facilitate Transfer Learning
through Meta Learning with image classification as an exam-
ple. Our results show that metamodels help to reduce compu-
tational cost by proposing appropriate settings for a Transfer
Learning process for a target task. In particular, our approach
only needs metadata and no actual samples from the dataset to
propose Transfer Learning settings better than simply using the
best-known settings or inferring settings by linear regression.
Regarding the cost allocation for metadata collection, we argue
that we initially performed these assessments for another study
and then expanded them for demonstration purposes; the value
of our method lies in the systematic reuse of all metadata
that arises anyway. We think that further research may prove
worthwhile, and we plan to pursue various leads as future
work. We published our source code and data set under [70].
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