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Abstract—In this paper we evaluate different machine learning
models for human body detection in heavy industry environ-
ments. Contributing a framework to asses the reliability of
a detection system in industrial environments, we compare
techniques of feature extraction for support vector machines to
artificial neural networks. To accommodate for common environ-
mental challenges in heavy industry, such as dust, difficult light
conditions and partially covered persons, we apply programmatic
changes to our test image set and evaluate the accuracy of person
detection, foot point estimation and the tendency of erroneous
detections.

Index Terms—heavy industry, image processing, human detec-
tion, neural networks, Industry 4.0

I. INTRODUCTION

The emerging economic trend of industry 4.0 requires soft-
ware to support heavy manufacturing structures. To increase
productivity, flexibility and work safety, an automatic facility
management strategy needs applications that gather and anal-
yse information about the production process in realtime. The
project DamokleS 4.0 [5] aims to develop a system which aids
employees of heavy industry sides using modern hardware
and software. For example, augmented reality glasses and
other smart mobile devices may provide information to the
workers at any moment in time, which helps them to make
more efficient use of time or access fast evacuation routes in
case of an emergency. These systems require reliable detection
of humans in factory sites to provide information. Putting the
information into a context model allows for online information
assistance and improved production planning. An essential part
of such a software concerns processing of images provided by
cameras.
In this paper we examine different methods to detect human
bodies in a heavy industry setting. Our contributions include a
simulated industrial work video data set, which we recorded in
a laboratory setting, and various image perturbation methods
to seek an accurate and fail-safe human detection system.

We begin this paper by delineating the context of this contri-
bution, relating to other work within the DamokleS 4.0 project
and previous projects. We then illuminate our evaluation
process by explaining how we collected and preprocessed
our image data, which evaluation criteria we assessed, which
person detection methods with what parameters we used and
the results we obtained that way. In our conclusion we end
this paper with a short discussion of our final results and a
statement about future contributions and which improvements
we might expect from them.

II. STATE OF THE ART

Current state of the art knows a variety of methods to
detect human bodies on camera images [3, 4, 7, 9, 15, 16,
17, 18, 20, 23, 24, 25, 27, 26]. We decided to focus our
investigations on the well researched Histogram of Oriented
Gradients (HOG) [2, 4, 13, 20, 22, 29], the neural architecture
You Only Look Once (YOLO) [15, 16, 17] and the OpenPose
system (OP) [3, 18, 23].
In a related project we introduced a video surveillance system
to protect critical infrastructures using only HOG method
combined with a Kalman tracking algorithm [10]. In this
project, we designed our software architecture such that it
supports human operators who detect, track and recognize
suspicious subjects in case of an alert. We implemented our
system at two reference airports in order to gather intelligence
about arising challenges in real world applications. We found
the huge amount of image data, recorded on a network of
non-overlapping cameras, impeded the recovery of a once
detected person. The camera-based data analysis consisted of
several image processing modules like a salient-based people
detection and a HOG algorithm based on the implementation
of [13]. We decided to use a GPU-based implementation to
speed up the HOG algorithm and make it fulfill our realtime
requirements. The scenarios described in [10] resemble those
in the context of heavy industries with respect to challenges



introduced by different light conditions and the high need for
fast algorithms.
Concerning the DamokleS 4.0 project [5], [14] describes
the overall software architecture underlying our context
model [6]. Also [14] sketched the essential ideas that drive
our test scenarios as well as the associated processes for
implementation in mobile devices. The suggested scenarios
concern workplace safety, production and maintenance
applications. The proposed approach provides context-based
support for factory employees during all these scenarios. For
context recognition, [14] proposes the usage of mobile device
sensors and external sensors devices mounted in the factory
building, for example cameras and beacons.

III. IMPLEMENTATION

Our human detection system must meet different
requirements. First, we need to consider difficulties in
industrial environments; we thus need to consider image
perturbations by dust, light reflections and moving objects
that may hide workers from sight. Second, we want to
perform an accurate translation of the human position into a
world coordinate frame and thus need a precise estimation
of the foot point location. And for a third requirement, our
system must run in real time on affordable hardware.
In order to assess a most reliable human detection system,
we determine three important quality factors: the accuracy
in terms of human body detection, the precision of foot
point localisation and the tendency of erroneous detections,
which may either falsely detect persons or miss persons in
the image. We evaluate these qualities on a set of simulated
working task video sequences recorded in our laboratory,
which we programmatically vary with increasing noise, light
reflections and partial occultation via bulks of noise.
Figure 1 shows exemplary outputs of our three investigated
methods on typical frames of our recorded data. The HOG
and YOLO detections lack anticipation of hidden body
parts, such that the location of the foot point remains rather
imprecise. An exemplary pose estimation by OP on one of
our simulated work task frames shows a good anticipation of
the hidden body parts; we may reliably locate the foot point
of the person standing behind an obstacle where the other
methods would merely detect the upper body part.
In the light of these requirements, we expect the best results
from the OP system, as it incorporates knowledge of a human
body model and should thus resist to perturbations by noise,
lighting conditions and partial occultation by design. We
expect difficulties in the foot point detection performed by the
HOG algorithm and the YOLO architecture, as they would
only the visible body part. From the HOG method we expect
good performance under normal conditions but a rapid decay
in accuracy as our systematic perturbations proceed.

Fig. 1: Exemplary detections of our three investigated methods
on different frames of our simulated working task. Left:
OpenPose yields a human body skeleton of a person partially
hidden by an object. Center: YOLO detects multiple persons
but misses a person in the crowd, also it does not anticipate
the hidden body parts. Right: HOG detects rough bounding
boxes of three persons in a crowd.

A. Histogram of Oriented Gradients

The Histogram of Oriented Gradients (HOG) method yields
feature descriptions of an image. Any machine learning model
may then use these features in order to perform object
detection, for example to perform human detection [4]. As
elaborated by [22], this method first computes the gradient
of an image, for example by central differences, then divides
the image into adjacent, non-overlapping cells and for each
cell computes the gradient orientations and bins them into a
histogram. Grouping these histograms into larger blocks yields
a concatenated block feature b and allows a block feature
normalisation by the Euclidean norm:

b =
b√

||b||2 + ε

The method then concatenates the normalized block
features into a single HOG feature, which it then normalises
again. Upon these features a learning algorithm may detect
or classify objects in the image as done by [2]. For our
evaluation, we used the OpenCV implementation with a
support vector machine (SVM) [11, 21].

B. You Only Look Once

The You Only Look Once (YOLO) network performs multi-
class object detection on images. YOLO runs in real-time
and may detect humans as well as any other objects that it
has learned. The neural architecture basically consists of a
deep cascade of convolutional and max pooling layers with
different filter sizes and pooling regions. The output layer of
this network yields a grid of S×S cells; for each cell it predicts
a class probability and a number of bounding boxes with a
confidence score [17]. The method multiplies the conditional
class probabilities and the individual box confidence scores,
obtaining a class-specific confidence score for each cell, using
the intersection over union (IOU) measure between predicted
bounding boxes and ground truth:

P (class|obj) · P (obj) · IOU truth
pred = P (class) · IOU truth

pred



The authors incrementally improve on their neural
architecture [16]. For our experiments we use the first version
of YOLO as implemented in the Darknet C++ library [15].

C. OpenPose

The OpenPose (OP) method reliably estimates human
body poses by employing body model knowledge [3, 18,
23]. Depending on the choice of the body model (COCO,
BODY25 or MPI) the runtime and pose estimation quality
may vary within overall reasonable performance ranges. OP
estimates two-dimensional poses of multiple people in an
image, combining multiple stages of learned Part Affinity
Fields (PAF) and Part Confidence Maps (PAC) with a bipartite
graph matching procedure [3]. The neural architecture learns
to associate body parts with individuals in the image,
encoding a global context and jointly learning part locations
and their association within one prediction process. The
real-time applicability allows us to detect multiple persons in
a live video stream and use this information for precise foot
point location.

IV. EVALUATION

We recorded video data upon which we tested our methods
in our laboratory. We have mounted four AVT Prosilica
GE1650C video cameras with a resolution of 1600 × 1200
pixels, from which we use the recordings of two cameras
(C1, C2) for our evaluation. We set up a simulated work task
scene in three modalities: a single person walking through
the room and working on a computer, a group of two persons
walking the same path and a group of six persons doing
random walk and performing arbitrary work. For the first two
modalities, the actors wore workwear. In the group footage
three persons in everyday clothing enter the scene. We
recorded about 4, 000 frames with two cameras C1 and C2,
from which we manually labelled a total of 3, 557 images,
each with bounding boxes around the individual persons and
around their feet. We then preprocessed these images with our
systematic perturbations as explained below and obtained a
test set containing 142, 311 images, upon which we measured
the three methods qualities.

A. Noise

To evaluate the methods resistances against noise, we pertur-
bate the input images with noise, which we generate according
to the normal distribution [12]:

p(x) =
1√
2πσ2

e−
(x−µ)2

2σ2

We set µ = 0 and increase σ in a range of [0, 250] with
a step size of 25, such that we generate eleven images with
a different noise level for each video frame, starting with
σ = 0 and ending with σ = 255. We did not try other kinds
of noise as we make no further assumptions on the nature of

Fig. 2: Example images of our preprocessed video frames. Top
row: Gaussian noise increases from σ = 0 (left) to σ = 250
(right). Second row: the strength of our blinding light increases
from 0% of light map addition (left) to 100% (right). Third
row: our six occultation modalities. Bottom row: the combined
perturbations, from i = 0 (left) to i = 10 (right).

the noise that may perturbate the whole camera image [1].

B. Light

In order to investigate the performance under different light
conditions, we simulated a blinding light effect on a shining
surface. We therefore added a blinding light effect [8] on the
background image and subtracted the original background,
such that only the light maps shown in figure 3 prevailed.
We then added this light map to each frame recorded by the
respective camera, with a strength varying from 0% to 100%
in steps of 10%, such that we obtained eleven blinding light
images per original video frame. We did not try darkened
conditions as we assume the factory site to provide enough
illumination for cameras to work proper.

C. Occultation

To simulate partial occultation, we partially covered our
manually labelled bounding boxes with noise. We covered



Fig. 3: Top row: background images of camera C1 (right) and
C2 (left). Bottom row: corresponding light maps added to the
images of camera C1 (right) and C2 (left).

all the bounding boxes in an image simultaneously in six
modalities: the horizontal left, center and right part as well
as the vertical top, center and bottom part. Each occultation
modality covers a third of the bounding box along the
respective axis. Within each bounding box, we cover the
occulted region with a bulk of black and white pixels
randomly generated according to the normal distribution. We
did not add real occlusion blocks as our simulated environment
also provides natural occultation by tables and other obstacles.

D. Combined perturbations

We combine the perturbations by noise, blinding light and
occultation to obtain a fourth, most challenging test case of
hardship. To avoid a combinatorial explosion, we decided to
generate eleven images per original frame, to each of which
we add noise and blinding light as previously explained, but
increasing in the same pace: for i ∈ {0...10} we set the noise
σ = 25 · i and the light strength to (10 · i)% We also add a
combination of bounding box occultation by covering each
person in the bottom third in horizontal direction and along
his or her vertical central axis. The bottom row of figure 2
shows the results of this combined perturbation process.

E. Results

To evaluate the methods we consider their performances for
our three requirements under varying conditions as shown in
figure 4 and their computational resource usage as listed in
table I. We evaluate the detection qualities via the accuracies
of person and foot point detections as well as the overall
tendency of erroneous detections. As we average the erroneous
detections, which amounts to < 0 for missing persons and
> 0 for false positives detections, a value of 0 means that the
methods tends to produce as many false positives as it misses
persons on average.

HOG YOLO OP
FPS 33.5 18.4 11.3

GPU Memory 251 MB 1293 MB 1313 MB

TABLE I: Speed and computational resource usage of the three
investigated methods measured on a video file.

Our manually labelled data consists of bounding boxes for
persons and their feet; to obtain a score for performance mea-
sures, we test whether the methods estimate correct locations
of the persons and their feet by checking if predicted points
lie within our manually labelled boxes. Given the predicted
bounding boxes, we use their central point for person location
and the center of the bounding boxes bottom line for foot
point estimation to evaluate the HOG and YOLO method.
To evaluate the OP system, we used the BODY25 model
with default parameters. Using this human body model, we
evaluated the neck key point for person location and the center
between right and left ankle key points for foot point location.
As shown in figure 4, the OP system shows a clear advantage
in noise resistance, light anticipation and partially covered
body completion, especially considering foot point location.
Concerning partial coverages, we can state that the YOLO
detector especially misses persons covered along their vertical
central axis. Looking at the erroneous detections tendencies,
we may state that, on average, OP tends to falsely detect
as many persons as it misses while YOLO tends to miss
persons in the image. Considering the hardship of combined
perturbations, all methods rapidly decay in performance, yet
OP excels all other methods. Evaluating the detailed individual
results, as published under [19], the tendency of erroneous
detections hints that OP falsely detects persons in the stack
of chairs on the background of C1. Unsurprisingly, the HOG
method struggles with all our image perturbations most.

V. CONCLUSION

We contributed a method to evaluate person detection
models for heavy industry environments. We have published
all our results, the source code and raw data mentioned in this
paper under [19]. Our investigations focus on human detection
on RGB cameras. From our investigated detectors, OpenPose
proves most robust to partial coverages, noisy images and
blinding light conditions. Yet the YOLO architecture may
provide useful auxiliary scene information, which we may
use to track non-human objects. The HOG method may still
prove useful in cases with little computational resources but
perfect image conditions.

A. Discussion

In our evaluations we used default parameters of all our
investigated methods. Fine-tuning these hyper parameters may
change results, also it may make sense to use means of Trans-
fer Learning in order to fine-tune the models on the concrete
industrial situation. As for YOLO, we have used the pre-
trained weights from the first version. We did not implement
any sophisticated human body completion techniques nor did
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Fig. 4: Overall results averaged over all sequences. Top row: resistances against noise. Second row: anticipation of the blinding
light effect. Third row: partially covered persons in our six occultation modalities. Bottom row: the hardship of combined
perturbations. Left column: accuracy of person detection. Middle column: accuracy of foot point detection. Right column:
number of erroneous detections (< 0: missing persons, > 0: false positives, 0: as many missing persons as false positives on
average).



we use any information of temporal correlation between the
video frames but worked on each frame independently. Doing
so, we discard advantages that may come from recurrent neural
network architectures or visual flow information. As we could
not find any related work that describes challenges for human
detection in heavy industrial environments, we cannot make a
statement on how well our dataset simulated the real scenarios.

B. Future work

Future work may evaluate recent development in object
detection, for example YOLOv3 and through-wall human
pose estimation using radio signals, as described by [28]. We
also aim to implement techniques to track individual persons
through the factory site. This requires additional identification
features, such as face recognition, gait recognition or smart
device identification.
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