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Abstract. The increasing consumption of electrical and electronic de-
vices is alarming. Therefore, the transition from linear to circular econ-
omy becomes essential. The key solution to support this transformation
is artificial intelligence. This work presents a transfer learning approach
to support the recycling of electrical and electronic waste (Ewaste). We
emphasize the use of transfer learning technique, particularly, to classify
Ewaste. In this approach, we design a hybrid model of residual nets and
inception modules that can classify features of a source domain (smart-
phones in our case) and leverage this knowledge to another device (elec-
tric screwdrivers, as an example). Using our model, we achieve an overall
accuracy of 94.27% and 97.22%, respectively. These are comparable to
the popular pre-trained models, which use similar network topologies.
We use a web crawler program for collecting images from search engines
to build the datasets with less efforts. We show that transfer learning is
more robust and performs better than training from scratch. It avoids
duplication and waste of computational resources. As a result, with the
benefits of transfer learning, we can provide detailed information about
the devices that need to be recycled. Ultimately, this would greatly sup-
port the overall recycling process.

Keywords: Transfer learning - classification - Ewaste - circular econ-
omy.

1 Introduction

According to the Organization of Electronic Cooperation and Development

(OECD) [5], all products that contain a Printed Circuit Board (PCB) and
use electricity are called electrical and electronic devices. When this appliance
reaches end-of-life, it is called Ewaste. Middle to high-income countries are more
likely to consume more technology that will sooner become Ewaste [18]. This
paper is organized as follows: It starts by introducing the motivation and chal-
lenges, state of the art of automated Ewaste management, and the reason for
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using smartphones recycling as a case study, in the Introduction in Section [I}
Section 2] presents the research gap. Section [3]describes our transfer learning ap-
proach, which is designing an Ewaste classifier as an efficient method for Ewaste
classification. Finally, the conclusion of the work is given in Section

1.1 1.1 Motivation and challenges

Recently, many initiatives foster the transformation from linear to a circular
economy. However, only a few studies mention this transformation of Ewaste.
Other studies attempted to recover electrical components (ECs) and materials
using conventional methods such as acid burning, melting, and shredding to re-
duce metal and materials recovery. Informal recovery of lead from PCBs also
emits dioxin and other chlorine compounds [5].

A survey of literature reviews [16] conducted from 2004 to 2019, found that there
are six fundamental Artificial Intelligence (AI) applications in Solid Waste Man-
agement (SWM), which are: waste dumpster level detection, forecasting of waste
characteristics, process parameters prediction, process output prediction, vehicle
routing, and SWM planning. The field of Ewaste classification for recycling is
still emerging.

1.2 State of the art of using artificial intelligence in related works

A review of the state-of-the-art is presented by [15] to dismantle and sort ECs.
They found that Convolution Neural Networks (CNN) combined with physical
separation and spectroscopy techniques play a vital role in classifying ECs be-
cause of their low cost. It shows that machine learning can detect the Tantalum
capacitors on PCBs, then scrap them using a robot arm. ECs from a PCB image
could be identified using CNN with high accuracy [11].

ZenRobotics Recycler (ZRR) utilizes a combination of AI, robots, and sen-
sors [22]. It is a robot system that features two robot arms with multiple sensors,
including High Definition (HD) RGB cameras, Near InfraRed (NIR) sensors, and
metal detectors. With the support of deep learning software, it can sort 13 dif-
ferent materials or waste streams. This robot has an average purity 97% for
tested waste streams. The study emphasizes the importance of digitalization as
an ”instrument” for achieving sustainability and future competitiveness efforts.
In addition, our review of [4], shows that transfer learning is a promising technol-
ogy that supports object classification. It has significant advantages in achieving
high performance while saving training time, memory, and effort in network de-
sign. They also proved that weight freezing is an effective method to reduce
network complexity and eliminate overfitting.

1.3 Case study: Smartphones

Smartphone recycling will be used as a case study because it faces many chal-
lenges. Due to their rapid production and low recycling rates, smartphones are
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the fastest-growing Ewaste stream. Additionally, traditional recycling can be
challenging due to the complexity of recycling hazardous substances and con-
tamination with other materials and metals. Moreover, the technical lifespan of
the device is short, almost two years [3]. According to Nordmann et al. [1], be-
tween 65 —80% of smartphones are recyclable. They found that smartphones are
made of 60 different substances. Approximately 56% of a smartphone is made
of plastic, 28% of metal (of which 15% copper, 0.35¢ silver, 0.034¢g gold, 0.015g
palladium, and 0.00034g platinum) are used for the cables, the contacts, the
circuit board, and the battery, 16% of glass and ceramics are used for displays,
and 3% are other substances. The major problem with these substances is that
they are mined in different countries. The research on automated smart waste
management is still in its infancy due to the lack of datasets and the slow move
towards Al-based smart waste management.

2 Research gap

Al and robotics can be used to support the transition from linear to smarter
Ewaste recycling. This study aims to bridge the gap between Ewaste recycling
and Al by emphasizing the role of transfer learning as a promising method to
leverage knowledge gained from training a specific device into other devices,
rather than training each device from scratch.

3 Owur approach

Our goal is to process small and medium-sized electronic devices that need to be
recycled. The suggested technique is: designing an artificial intelligence (transfer
learning specifically) system. We aim to maximize material recovery rates and to
classify objects reliably with the least amount of human intervention. Eventually,
this will be a black box classifier for many future devices.

3.1 Design an artificial intelligence system

Besides negative health impacts, human intuition is imprecise when dealing with
repeated patterns in waste streams. Hence, intelligent systems are imperative,
especially when dealing with complicated tasks with small datasets.

Why artificial intelligence In the waste stream, there are repeated patterns
that play a fundamental role in dealing with complicated tasks that have incom-
plete or uncertain datasets. This makes it impossible for humans to process them
precisely. Thus, an intelligent system is essential. Machine learning is a promis-
ing method because of its lower cost and distinctive features of ECs. Although
research in this domain could be costly at the beginning, it is a smart investment
if it is designed to be modular, and extensible in the long term. Since there is a
high need to structure, analyze and evaluate a large stream of patterned data,
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including Al in waste management is essential.

Using artificial neural networks to mimic human brains is an efficient method
to process Ewaste classification with minimal human interventions. In addition,
deep learning can be applied to recognize recycling devices in a way that is
more accurate than human performance. Theoretically, increasing the number
of images per category can boost the accuracy of recognition. On the other
hand, this, in turn, increases training time and memory consumption, which
are undesirable in the industry. Our approach suggests a trade-off between ac-
curacy, training time, and memory by using the transfer learning technique. It
will reduce the computational burden and surpass the accuracy of training from
scratch. To ensure this point, in a previous study [2], we used an AlexNet as
a pre-trained model to focus on the transfer learning technique as a promising
solution for object classification and the benefits of applying previously gained
knowledge from a source domain and transferring it to a target domain via deep
neural networks.

Creating datasets The web contains a huge amount of data that could enrich
the data sources for building a useful dataset. A web crawler is a program or a
script that retrieves useful information according to an algorithm. It navigates
the web and downloads a document in an automated and methodical way. It
fetches the HTML pages, parses them, and extracts the related data [26].
Training CNNs requires huge datasets used as training images. To our knowl-
edge, no previous study has published a public dataset for Ewaste. Therefore,
we use a web crawler program that is designed for collecting garbage datasets
by [12]. This web crawler is written to capture images from Google images and
Baidu images. It is relatively easy to crawl here because it doesn’t require a
login, authentication, or dynamic load. The only concern is the time between
requests should be long enough to prevent floods of queries to the web page
that could block the IP requests because the source may consider these requests
as malicious or suspicious and cause a denial-of-service attack [23]. We use a
keyword-based web crawler as a starting point to collect data from the web.
Using keywords, we can construct our dataset for each class, such as ”iPhone 6”
+ ”backside”. We can also set the maximum number of images that we want to
download. The resolution of the images could also be identified.

It is difficult to collect appropriate images from the Internet to train a CNN di-
rectly. For example, searching for a specific keyword doesn’t just crawl images we
want, it also retrieves noisy images. The keyword ”iPhone 6” leads to images that
are not suitable for learning, such as the charger, the packaging of the device, or
non-related photos taken with the device. This happens because it uses keyword-
based metadata for the searched image [8]. The dataset should be homogeneous
and should not contain anomalous objects. In this case, manual pre-processing
is essential to filter the data and focus on the object in the center region-of-
interest. Thus, data pre-processing should be completed before training, and
removing irrelevant images manually is an important step, as shown in figure
After data cleaning, we apply deep learning models to classify smartphones, and
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electric screwdrivers, as example, to test transfer learning method. With this
crawler, we create the source dataset (smartphones) that contain 8 classes with
150 images per each as, Gigaset GX290_plus, HTC One M8, Huawei P20 Pro,
iPhone 6, Samsung Galaxy A20, Sony XA Dual, Sony XZ1, and Xiaomi Redmi
Note 8, with a balanced dataset of about 1200 images in total. For the target
dataset (electric screwdrivers), it consists of 4 balanced classes as, Bosch I1XO,
Hitachi_DS_12DVF3, Makita_ DDF481, and Parkside_ PAS_3.6_A1 with 240 im-
ages in total.

nt!
‘ ﬁ—»?—‘i

Data cleaning E

Filtered image

Fig. 1: The web crawler and pre-processing of a smartphone device.

Transfer learning Humans leverage previous knowledge gained from experi-
ence and reuse them to tackle new but related problems. CNN tries to mimic the
human brain employing a concept called, transfer learning. Transfer learning is
the process that uses the information gathered from a previous task to improve
the performance of a new but related task [6]. Therefore, transfer learning by
definition contains two basic components, which are: the domain and the task,
as follows [17]:

— The domain D has two elements, namely, the feature space X, and a marginal
probability distribution P(z) i.e. D = {X, P(z)}, where z € X.

— The task T has two elements, namely, a label source Y and the prediction
function f(-) denoted by T ={Y,f(-)}.

By using the notations of: Dg for source domain, Ts for source task, D for
target domain, and Tp for target task, where y € Y and y, is the correspond-
ing label of z in Dp using the knowledge in Dg and Tg, where Dg # Dp, or
Ts # Trp. Transfer learning could be defined as follows: Transfer learning aims
to help improve the learning of the target predictive function that is used to
predict the corresponding label, i.e. f(z) = P(y|z), which is the probability dis-
tribution.

Choosing the source should be well defined because it should provide two re-
quirements: The source distribution should be similar to the target distribution
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i.e. it has similar features, and source data (in our case as images) should pro-
vide useful information to classify. Therefore, the source data should have a high
accuracy rate.

Transfer learning has four techniques, which are: Model transfer, instance trans-
fer, mapping transfer, and adversarial transfer [21]:

— Model transfer uses the learned knowledge from the base model to predict
the target model.

— Instance transfer chooses partial instances from the source domain and as-
signs suitable weights as supplements to the training set in the target do-
main. This approach focuses on giving less importance to samples who are
irrelevant in the source domain to reduce the distribution difference.

— Mapping transfer maps instances from the source domain and a target do-
main and creates a new data space that improves the similarity between
them.

— Adversarial transfer uses an adversarial method to find the transferable fea-
tures, which are suitable for the source and target domains.

We apply the model transfer method. It usually uses the same model architecture
as a trained model, and it is implemented by tuning the full layers of the model
trained on the source domain or fine-tuning the classification layers only. The
former approach partially uses the parameters of the trained model, whereas the
latter approach takes full parameters that remain fixed to initialize the training
process [13].

The similarity of data distribution between source and target domain has a huge
impact on the efficiency of transfer learning [24]. In addition, the backpropaga-
tion in CNN may decrease when the model becomes very deep. Therefore, the
skip-connections approach can overcome this problem by skipping inactive levels
and reusing the activation from previous levels. Recently, transfer learning and
domain adaptation have gained attention in many applications. Most of recent
domain adaptation research focuses on learning the domain invariant features.
This is done by mapping the source and target domains in the same latent
space or adapting one or more layers in the network structure. Domain adapta-
tion methods such as the Central Moment Discrepancy (CMD) [25], Maximum
Mean Discrepancy (MMD) [9], and Residual Transfer Network (RTN) [14] em-
ploy residual layers. Therefore, we will use RTN as a method to control domain
adaptation. The model transfer design of our approach is shown in figure

Implementation We propose a hybrid model that is inspired by a combination
of two concepts, namely, residual nets and inception module with dimension
reductions. This model consists of four parts, and 67 layers, as illustrated in

figure [3}

— The input image size is [224 224 3]. It starts with stacking three convolutional
layers (followed by a RELU as activation function and channel normalization
layer). These layers are as follows; the first convolutional layer has a 7x 7 filter
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Fig.2: The model transfer design of our approach.
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Fig. 3: Our classifier model.
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size to reduce the input image directly without losing spatial information.
Then two consecutive convolution layers are added with 1 x 1 and 3 x 3 filter
sizes to generate a large number of feature maps. These layers are used to
enable the model to learn global features.

— Stacking three inception modules on top of each other. Inception blocks with
dimension reductions play a major role in reducing computation costs. This
module has four branches that are 1 x 1, 3 x 3, and 5 x 5 convolutional
kernels size in parallel, with one branch that has a max-pooling layer. It is
used to down-sample the input when it is fed-forward through the network,
which is achieved through the reduction of the dimension of input data. The
convolution is used to compute the reductions. We increase the number of
filters when going deeper in the network to extract more complex features.
These blocks are connected through a concatenation layer.

— Using RTN as residual connections between each inception block. There are
three connections between each inception module to increase feature reuse
and avoid vanishing gradients, as mentioned before.

— It ends with output task-specific layers. An average pooling layer is added to
calculate the mean of all feature maps of the last inception module. This is
followed by a dropout layer with 0.4 to enhance regularization and flatten the
layers. Then a fully connected layer is added to correspond to the number of
classes in the domain dataset, which is 4 in our case. Finally, a softmax layer
is utilized to calculate the probability distribution of the prediction vector.

The implementation environment is MATLAB, and the following training op-
tions are chosen, as follows: The batch size is 64, and the maximum epochs is
320, and Stochastic Gradient Descent with Momentum (SGDM) optimizer. To
accelerate the training, we use NVIDIA Quadro P4000. The learning rate is 103
for the source domain and we scheduled the learning rate for the task domain,
with a decay factor of 0.5 for each 20 epoch to detect local features. This tech-
nique maintains the global features at the beginning and drops the learning rate
to detect the local features. We split the labels as 80% for training and 20% for
validation sets.

Results and discussion We train the model on the training set and test it
on the validation set. We train this base model from scratch for the source
domain (the smartphones dataset), and we got the accuracy of 94.27% with
generalization, as shown in figure An example of the tested images of the
source dataset is shown in figure

Then, training a small target dataset using fine-tuning the base model. First,
it freezes the network parameters for the whole base model except the task-
specific layers. This means preserving (not changing) the model parameters,
including weights and biases for every neuron, rather than training using random
initialization. This process is implemented by setting the learning rate to zero
for the frozen layers. Next, training the result by backpropagation the network
parameters instead of random initialization. We fine-tune this model for the
target domain (the electric screwdriver dataset), hence, we get the accuracy of



Transfer learning approach towards a smarter recycling 9

97.22% with generalization. Although it is achieved with about 75 epochs, we
unify the testing for fair evaluation, with very short training time compared to
training the source domain, as shown in figure

An example of the tested images of the target dataset is shown in figure [Ad]

e g s 50 - Gigaset GX290 plus, 99.2% Huawei P20 Pro, 98.6%

HTC One M8, 99.8% iPhone 6, 100%

(a) Example of accuracy performance
for testing source domain (smartphones

dataset).
(b) Example of accuracy performance
for testing source domain (smartphones
dataset).
o - : Bosch 1x0, 100% Parkside PAS 3.6 A1, 99.5%
e =
A |
" : Hitachi DS120VF3, 99.8% Makita DF481, 100%
o\ m I
i R

(d) Example of accuracy performance for
testing target domain (electric screwdriver
dataset).

(c) Model performance for target domain
(electric screwdriver dataset).

Fig. 4: The performance of the suggested model

We evaluate our classifier with three popular trained models that use similar
design methods, such as GoogLeNet and Inception-V3 that use the
inception module concept, and ResNet-18 that uses the residual method .
From the confusion matrix, the diagonal elements represent the samples that
were correctly classified. To calculate the overall accuracy, is the percentage of
the correctly classified samples over the total number of samples. Table [1| shows
the overall accuracy values of the tested models.

We find that, our suggested model approaches the popular pre-trained mod-
els with the advantage that training the network can leverage features related to
Ewaste rather than images like ImageNet (a benchmark dataset that is used for
training the popular models). These results are also confirmed by , that pre-
training on ImageNet provides fewer benefits and does not transfer well to small
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Table 1: Evaluation of our approach

Tested Models Tested datasets
Smartphones |Electric screwdriver
GoogLeNet 94.3% 93.33%
Inception-V3 96.11% 95.52%
ResNet-18 94.97% 94.59%
Our Transfer Model|(Source) 94.27%| (Target) 97.22%

fine-grained tasks. Therefore, training off-the-shelf models, like GoogLeNet, Inception-
V3, and ResNet-18, in our case, can be a starting point to extract features, but
transferring weights from related source tasks can learn better adaptable fea-
tures. Figures [fa] and [Ac] proves the transfer learning benefits of speeding up the
training time and overcoming the small-scale related target dataset.

4 Conclusion

Deep learning is data-hungry. In other words, when data is scarce, the model
will perform poorly. Therefore, transfer learning is a strategy that overcomes
this limitation. In our approach, we focused on using transfer learning as a core
technique for object classification. Our model is used as a base, then transferred
to another task. This would save time and effort than training from scratch.
We proved that our model achieves high accuracy, and it approaches popular
pre-trained models that are applied to train ImageNet. We used web crawling to
extract images automatically from web pages to build our datasets. We show that
web crawling is a powerful tool for retrieving any information from a seed URL,
usually from search engines. Finally, we can transfer all the detailed information
to the next phase of material processing to support the overall recycling process
with minimum human intervention, but with higher accuracy. A more extensive
comparison with other object classification models (e.g. other artificial neural
networks topologies) can be performed as a future work.
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