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Abstract—Recycling electrical and electronic devices in an
automated method can reduce the negative impact on human
health and the environment compared with manual dismantling.
This approach suggests using multi-sensors by using RGB sensor
to classify the devices using a deep learning method and infrared
sensor to recognize the internal component of the device. Par-
ticularly, the sorting accuracy achieves 98.5% using the state-of-
the-art EfficientNet for the tested devices, and infrared images
give a significant guide to the main components of the devices.
Eventually, this information can be transferred to the next stage
of material processing to provide fewer risks and a smarter way
to avoid toxic materials.

Index Terms—Mult-sensor, E-Waste recycling, Infrared sensor,
transfer learning.

I. INTRODUCTION

The multi-sensors method is widely applied to take
the advantages of sensors in different ranges of the light
spectrum together to maximize meaningful information and
minimize redundancy [1]. Deep learning proves its efficiency
in processing RGB color space with high accuracy. However,
these images exhibit features in the visible spectrum. Infrared
(IR) images are used in detecting the contrast of temperature,
and they are safe, cost-effective, and convenient in different
applications, such as preventative maintenance [2], security
inspections, gas detection, anomalies detection [3], etc.

II. RELATED WORK

Many initiatives support the automation of the recycling
process, in general, using different sensors.
ZenRobotics uses a combination of artificial intelligence (AI),
robots and Near InfraRed (NIR) sensors to sort 13 different
materials with an accuracy of 97% [4], namely: Ferrous
metals, non-ferrous metals, textiles, cardboard, wood, paper,
High Density Polyethylene (HDPE), Low Density Polyethy-
lene (LDPE), PolyPropylene (PP), PolyEthylene Terephthalate
(PET), other mixed plastics, Tetra Pak, printing, and green
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waste. This robot has an average purity 97% for tested waste
streams. The study emphasizes the importance of digitalization
as an ”instrument” for achieving sustainability and future
competitiveness efforts.
Fujitsu uses signal and image processing combined with deep
learning to inspect Non-Destructive Testing (NDT) techniques
to detect patterns for manufacturing defects [5]. NDT could
also be used to check for visible and invisible damages in the
field of predictive maintenance before it turns into catastrophic
failure, which is not always detected by available tools [6].
Nonetheless, to be of our knowledge, there is no study about
the automation of recycling electrical and electronic devices
or the so-called E-Waste.
Maurice et al. [7] conducted a qualitative study of 13 metal
recycling methods, including manual dismantling, surface
cutting knife, hot air heating, and InfraRed radiators, for
example. It was concluded in this study that no single method
would be sufficient to solve the problem since each method
possessed strengths and weaknesses. Therefore, a combination
of them could achieve higher accuracy and reduce the limi-
tations of using one method. Although manual dismantling
has cheap CAPital EXpenses (CAPEX), provides selective
disassembling, and is easy to implement, it has very expensive
OPerating EXpenses (OPEX), and is a polluting, slow process
and requires hard-manual work and manpower. Based on
their research, the authors concluded that IR radiations have
moderate CAPEX and low OPEX costs. This makes them a
feasible solution as they allow for easy disassembly and can
fit small volumes of devices.

III. THE SUGGESTED APPROACH: USING MULTIPLE
SENSORS

Based on previous related work in section II, and the
growing need to automate the process of recycling E-Waste
this approach aims to apply multiple sensors to detect a wider
range of materials needed to be recycled. This detection can
be achieved through a variety of sensors ranging between the
visible and invisible spectrum. The RGB camera or sensor can
be supplemented by other sensors to support extracting ECs.
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The objective here is to define the location and composition
of the internal materials with minimal human intervention. In
addition, IR is used to detect the location and characteristics
of the internal components of Ewaste.

A. Test setups

This test used active thermography to analyze the main
components of the device. To make the internal features visible
to the surface IR lamp Trotec IR S2550 is used to heat up the
devices to around 50◦ with a heating capacity of 2500W, and
it is positioned 1m on top of the device. The IR camera, FLIR
T1030sc is placed about 1m in front of the heated device. For
the RGB images, a Mako G-419C color camera is used to
acquire images for the tested devices that need to be sorted.

B. Using an infrared sensor

This approach suggests using an IR imaging system to
detect the thermal contrast between the internal components
to recognize them. The emission of IR energy can be used to
distinguish the contrast of these objects with the background
and their emissivity. This technique is applied and found
that the IR images could reveal the internal components of
a smartphone ”Samsung A20” and an electric screwdriver
”Einhell TE-CD 18/50”, for example. In Figure 1, significant
features can be clearly seen as internal components, such
as the battery, the lenses, and the fingerprint sensor of the
smartphone. In addition, the motor, the battery, and the head of
the electric screwdriver can also be clearly seen [8]. Assuming
that comparing these findings with the datasheet of the device.
It will make the detaching and disassembly of these individual
components easier.

The IR radiator is suggested due to many advantages, like
a high disassembly rate, suitable for small volumes, and the
damage ratio of the electrical component (EC) is low [9].
Controlled IR radiators are one of the most advanced methods

Fig. 1. Detecting the internal electrical components in a smartphone and
electric screwdriver using infrared sensor.

to reach solder to its melting point [10]. Once the solder melts,
the internal components can be separated from the device
by a robot vacuum gripper for example. Park and coworkers
achieved 94% disassembly rate of electrical components using
this method along with the automatic rotating rod and sweep-
ing steel brush-type apparatus at an operating temperature of
250◦C and feeding rate of 0.33 cm/s [11]. Another application
for this technique is detaching small components. This method
could also be used to de-solder electrical components at
different temperatures without damaging them. This is due to
the nature of small devices, like smartphones, which include
small and closely aligned components. Therefore, the ECs will
be detached and then gripped away with a robot or shearing
machine.

C. Using an RGB sensor

This approach suggests using an RGB imaging system to
classify devices into device type, brand, and model number.
To apply this sorting method, the state-of-the-art deep learning
method is used, which is the transfer learning technique.
Simply, it applies the knowledge gained from completing one
task to solve a different but related task [12]. This technique
provides many advantages, such as reducing computational
time, bringing high classification and recognition accuracy,
being easier than building a neural network from scratch, and
the ability to use a small dataset in order to achieve these
advantages [13].
Another advantage of using artificial intelligence in E-Waste
recycling is cost-effective. Objects can be classified optically
using deep learning and can provide high accuracy while
using only an RGB camera and a computer. A study by
[14] shows that using an RGB images acquisition of tantalum
capacitors recycling using automated selective dismantling is
economically feasible and can provide 15% return of invest-
ment over four years. The study is implemented by training
a convolutional neural network to detect these capacitors on
the Printed Circuit Boards (PCB), then they are removed
mechanically using a scrapper mounted on a robot arm. Hyper-
spectral images have several channels like IR channels can
highlight metal traces and provide more information than
RGB images. However, they have many challenges including
insufficient labeled data for training, and the high volume of
produced data [15].
Convolutional Neural Networks (CNN) are usually built at
fixed resources, then they could be scaled up for better
accuracy if resources allow. The scale is performed commonly
by increasing the network depth (represented by the number of
layers), width (represented by the number of filters or channels
within each layer), or image resolution (represented by the
number of pixels in the image). The study of [16] is the first
empirical testing to trade-off these three factors. The suggested
model was not designed rather it uses a multi-objective neural
architecture search to create a baseline network and scale it up
to obtain a family of models called EfficientNets, which is an
optimization process that searches for the network architecture
with the highest possible accuracy given at fixed computational



resources. It is as the name implies very computationally
efficient and achieves 84.4% top-1 accuracy on ImageNet. It is
the state-of-the-art of image classification that optimizes both
accuracy and efficiency by measuring FLoating-point Oper-
ations Per Second (FLOPS) using the compound coefficient
term to uniformly scale network width, depth, and resolution.
It also transfers well to small datasets with fewer parameters
than other popular CNN models.
EfficientNets use three tricks that are reasons behind the better
accuracy and efficiency, namely, the inverted residual nets,
swish activation function, and squeeze and excitation block,
as follows:

• There are 7 inverted residual blocks, but their settings are
different, so the trainable parameters are greatly reduced.
In the residual block, depthwise separable convolution is
used, which is depthwise convolution first followed by
pointwise convolution [17].

• Take advantage of the squeeze and excitation block. The
output feature maps that are created by a convolutional
layer usually give equal weightage to each channel. How-
ever, the squeeze and excitation block assigns weightage
to each channel instead of treating them equally [18]

• As an activation function, the blocks use swish activation.
This is a multiplication of a linear and a sigmoid activa-
tion and it is proven to achieve 0.6% more accuracy on
the ImageNet dataset [19]

Our study used the frozen weights of EfficientNet B0 model
for image classification. It is a mobile size architecture having
11M trainable parameters. The testing environment was MAT-
LAB applied to NVIDIA GeForce RTX 3070 GPU with 20
epochs and 10−4 learning rate. The tested dataset is a balanced
dataset that has a mix of RGB images that are collected from
search engines. It consists of 7 classes of smartphones namely
iPhone3, iPhone4, iPhone5, iPhone6, Huawei P20, Gigaset,
Samsung A20, and 7 classes of electrical screwdrivers; Bosch
GSR18V21, Bosch GSR12V15, Bosch GSB12V35, Bosch
Easydrill1200, and Einhell TE-CD18/50. The validation ac-
curacy achieves 98.5%, and figure 2 shows an example of
classification accuracy of a subset of the tested devices. The
figure shows that the tested model can differentiate between
two very similar shape objects, which are iPhone3 and iPhone4
with about 97% accuracy.

D. Combining results

The previous discussion shows that each IR and RGB
images have their strength and weakness. To tackle this
challenge and respect cost efficiency, an ensemble of multi-
sensors with deep learning can yield promising results. This
approach proposes joining information collected from previous
experiments, which are: The device type, brand, and model
number from the RGB sensor, and identifying the exact loca-
tion of internal components from the IR sensor, then sending
them to robots, for example, for the next phase of material
processing. This would help in achieving automated recycling
with minimum human interventions and better recovery rates.

Fig. 2. Example of classification accuracy of a subset of the tested devices.

IV. CONCLUSION

This study suggests an approach for smart sorting small
to medium-sized electrical and electronic devices using RGB
images with transfer learning efficiently. In addition, it shows
that internal components can be identified through IR sensors.
A combination of these sensors provides a safe and cost-
effective method to support the recycling process by deploying
two types of sensors in a complementary way, namely RGB
and IR images. RGB images can classify electrical devices
(smartphones and electrical screwdrivers for case study) ef-
ficiently, whereas IR images can be used to distinguish the
main components of devices with their locations. Future work
aims to test more electrical devices and include more sensors
like X-ray. Further experiments can be conducted to define the
characteristics of materials based on their heating and cooling
curves, for example, which would help improve the overall
recovery rate.
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