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Abstract
The behavior planning of a vehicle in real world traf-
fic is a difficult problem to be solved. If different
hierarchies of tasks and purposes are built to struc-
ture the behavior of a driver, complex systems can be
designed. But finally behavior planning in vehicles
can only influence the controlled variables: steering
angle and velocity. In this paper a behavior planning
for a driver assistance system aiming on cruise con-
trol is proposed. In this system the controlled vari-
ables are determined by an evaluation of the dynam-
ics of two one-dimensional neural fields. The stim-
uli of the field are determined according to sensor
information produced by a simulation environment.

1 Introduction
Driver assistance systems have to assist the driver
of a vehicle in his actions. For this purpose the gen-
erated behavior-advice or action is determined by
the actual task, safety- and comfort-considerations.
Those constraints combined with the information
about the environment build the basis of the behav-
ior planning part of the driver assistance system.
The information about the environment is obtained
from sensor data, knowledge and integration over
time, as shown in [7, 5].

The interpretation of the information needed by the
behavior planning is a problem which has been dealt
with in several publications. A flexible architecture
for a driver assistance system was presented in [6].
In that paper a modularization of the architecture
was proposed which enables the incorporation of the
presented behavior planning. A proposal for be-
havior planning based on scene information using
an expert system was presented in [8]. A fuzzy-
control-system controlling the velocity of a vehicle
using radar-data was presented in [9]

Behavior planning is a complex task, as the pro-
posed action (e.g. overtaking, lane-change) has to
be made up of a set of basic behaviors (e.g. tracking
of a leader, driving backwards) or, if no adequate
basic behavior is known in advance, by calculating
a dynamic transition of the controlled values for the
behavior planning.

In the presented driver assistance system the dy-
namics for behavior planning are formulated in
the coordinates of the vehicle’s controlled variables
which are the steering angle and the velocity (as in-
tegral over the acceleration). This is done because
every action of the vehicle can be decomposed into
a change of these two controlled variables. An ex-
ample describing an intelligent vision system using
these controlled variables was published in [4]. In
that paper a traffic analysis system for autonomous
driving in urban environment was presented.

We describe a behavior planning for cruise control.
It is the task to achieve a smooth trajectory in or-
der to follow a leading vehicle. This behavior is
based on the results generated by ”neural field dy-
namics”. Neural fields have not been applied to the
problem of driver assistance before, but papers on
controlling an autonomous robot in office environ-
ments have been published [3].

The paper is structured into a section motivating
the usage of neural fields for behavior planning, fol-
lowed by a section presenting the field theory of a
neural field proposed in [2]. One-dimensional neural
fields designed by Amari build the basis of the field
dynamics controlling steering angle and velocity of
the vehicle. Then, the generation of input data is
shown. The definition of input data in terms of field
variables, the field dynamics and the extraction of
information out of the field excitation are described
in the consequent section. Afterwards results for a
driving situation is presented before the paper ends
with conclusions.

2 Behavior Planning
The term behavior planning comprises a variety
of actions to be performed in dependence on the
considered time scale. E.g. the action of driving
from point A to point B is defined on a larger
time scale than the action of changing the actual
steering angle by a fraction of a degree. To be able
to perform an effective behavior planning according
to the actual task the correct time scale has to be
chosen or a hierarchy of time scales representing
different levels of behavior has to be taken into
regard (E.g. driving from point A to point B,
driving in urban traffic, overtaking, or stopping the
vehicle).



In our paper we consider the shortest time-scale
for effective control of a vehicle: The time-scale
on which the steering angle and the velocity are
controlled. This control is influenced by the task
of cruise control changing on a longer time-scale.
Cruise control is an behavior based on the task of
following a leading vehicle regarding security and
comfort considerations. The control of the steering
angle results in a smooth trajectory, which does
not coincide completely with the trajectory of the
leader, because that could lead to cutting curves.
Also the steering angle may differ completely from
the leading vehicle’s steering angle in case of acute
danger like a car cutting into the actual lane.
For the velocity similar considerations hold: The
velocity is supposed to change smoothly according
to the velocity of the leader. Only dangerous
situations are supposed to result in an abrupt
reduction of velocity.

The choice of neural fields for the dynamics of the
controlled variables was based on several reasons.

1. The activity of proper designed fields can
result in a single-peak solution which results in
the decision for only one value of velocity and
steering angle.

2. The tendency to produce a multi-peak solution
can be taken as reliability-value of the actual
decision (which might result in a switch-off of
the driver assistance system).

3. Different kinds of information can be coded as
preactivation or stimulus to influence the field
variable. E.g. object- and lane-information,
traffic-rules and other knowledge can be coded
additively into the stimulus-signal.

4. In any case, the dynamic system can only vary
on its time scale, so a smooth change of the
field-variable is achieved.

5. The smoothness of the solution can be con-
trolled by the field input, so information
affording an abrupt change can be directly
coded into the action to be taken.

In the following section the applied field type is de-
scribed.

3 Neural Field Theory
Neural fields are nonlinear dynamic systems.
Originally they were introduced as models of the
neurophysiology of cortical processes [2]. The
chosen realization of a neural field was introduced
in [2] and extended to multi-dimensional fields
in [1]. The dynamic properties of this approach

have been examined extensively, so the approach
applied in our paper is described shortly. Further
information can be found in [2].

The field equation of a one-dimensional neural field
is given by

τu̇(z, t) = −u(z, t) + h+ S(z, t)

+
∫

Γ

w(z, z′)ϕ(u(z′, t))dz′ , (1)

where u(z, t) is the field excitation at time t(t ≥ 0)
at the position zεR. The position z characterizes
the position of the field-site relative to a reference
position z = 0. The temporal derivative of the exci-
tation is defined by

u̇(z, t) =
∂u(z, t)
∂t

.

The excitation u(z, t) of the field varies with the
time constant τ with τεR+. By means of the pa-
rameter h a constant preactivation of the field is
achieved. The stimulus S(z, t)εR represents the in-
put of the field which is dependent on the field po-
sition and varies with time. A nonlinear interaction
between the excitation u(z) of one field-site at posi-
tion z and the excitation of its neighboring field-sites
at positions z′ is achieved by the convolution of an
interaction kernel w(z, z′) = w(z − z′) and a non-
linear activation function ϕ(u(z′, t)). The integra-
tion is performed over the set Γ of all field-sites. To
guarantee the stability of the solution the activation
function is supposed to have a continuous derivative
and the properties

lim
u→−∞ϕ(u) = 0 and

lim
u→∞ϕ(u) = 1 .

The interaction kernel is chosen adequately to the
intention of diffusion or concentration of the actual
field activation. Mostly Gaussian functions (diffu-
sion) or Mexican Hat functions1 (concentration) are
applied. The strength of interaction is determined
by the energy W of the interaction kernel

W (Γ) =
∫

Γ

w(z)dz .

The equilibrium solutions

lim
t→∞ u(z) with

∂S(z, t)
∂t

= const. ∀t > t0

1Mexican Hat function(one-dimensional):

fMH(x) = c0 · e
− x2

2σ2
0 − c1 · e

− x2

2σ2
1



for the applied fields are divided into three cate-
gories [2].

1. ∅-solution, if u(z, t) ≤ 0 ∀zεΓ
2. ∞-solution, if u(z, t) > 0 ∀zεΓ
3. a-solutions, if local restricted excitations
R(u) = (z1, z2) of the length a = z2 − z1 occur.

The excitation R(u) is defined by

R(u) = {z|u(z) > 0 ∀zε]z1, z2[∧u(z1) = u(z2) = 0} .

If only one a-solution exists the solution is called
a single-peak or mono-modal solution, if several a-
solutions exist a multi-peak or multi-modal solution
is given.

The desired type of solutions for the field-equation
are single- or multi-peak solutions as they enable the
interpretation of the actual state of the field. In case
of a driver assistance task a single-peak solution is
favorable as only one steering angle or one change
in velocity can be set at one time step.

The type of solution is dependent on the stimulus,
the preactivation h and the interaction-kernel w(z).
According to [2] the correct choice of the parameters
of the preactivation and the interaction enables the
existence of single-peak and multi-peak solutions.
Therefore it must be fulfilled, that

W (a) + h = 0 (2)

with
h < 0

and
W (a) =

∫ z2

z1

w(z)dz .

The main advantage of the Amari-field is the addi-
tive composition of the stimulus. The field can be
stimulated starting with less information which can
be additively broadened as more relevant informa-
tion is obtained and is formulated in terms of the
field-variable.

The data for the field stimulus have to be coded
adequately with respect to the effect they are sup-
posed to have on the field activation (e.g. negative
values for inhibition of regions, positive values for
excitation). The next section deals with environ-
mental data sensed by the observing vehicle which
determine the input stimulus.

4 Input Data
The behavior of a vehicle can only be controlled ac-
cording to the information obtained from the envi-
ronment by sensors and according to knowledge (e.g.

the state of the vehicle like steering angle and ve-
locity) and global information (e.g. evaluated GPS-
data). Those data have to be interpreted according
to position, movement direction and relative veloc-
ity of relevant objects in the environment. Relevant
objects are characterized by the grade of influence
they have on the vehicle and by the actual task.
Relevant objects can be other road users as well as
traffic signs, elements of the landscape or the lane
itself.

For a good behavior planning several sceneries con-
taining different constellations of objects in position
and time have to be tested. Especially critical sit-
uations with high efforts on the system are of in-
terest. Those critical situations typically might en-
danger other road users or the vehicle itself. For
safety reasons those situations cannot be tested on
real roads without extensively examining the sys-
tem before. For this purpose a simulation environ-
ment has been developed. In this environment the
performance of the driver assistance system can be
evaluated in critical situations without any danger
to the environment. The simulation environment
(e.g. fig. 1) produces sensor data for different sen-
sors based on the defined situation. The behavior
of objects is defined in world coordinates for the
simulated scenery. The actions of the observing ve-
hicle are determined by its initial condition and the
controlled variables determined by the driver assis-
tance system. A bird’s-eye view can be provided for
a better overview (e.g. fig. 1(a)). In this scene the
observing vehicle (black) drives with high speed on
a two lane road with parking vehicles on the right.
It follows the initially slower vehicle moving in front
in the same lane. One of several simulated sensor
results of the scene is shown in fig. 1(b). A visual
sensor is assumed to be fixed at the rear view mir-
ror of the vehicle2 being directed in driving direction
(forward view).

The generated simulation data are interpreted ac-
cording to the information needed for behavior plan-
ning. The information has to be formulated in terms
of ”position”-information, at which the input of the
field is generated, of an stimulus-amplitude coding
the grade of influence on the field activation and
of the variance determining the influence over a
group of neighboring field elements. For the behav-
ior planning two one-dimensional neural fields which
are loosely coupled are applied. The ”position”-
information of the first field is the relative steer-
ing angle Ψ (relative to the actual vehicle direction,

2Technical data: chip area: 6mm2, installation height:
1.2m, opening angle: 90◦, pitch angle: 4◦



(a) (b)

Figure 1: Simulated sensor data for a traffic-scene of
a right curved road with parking vehicles on the right.
Driving direction of the observing (black) and of the
leading vehicle is from left to right. (a) bird’s-eye view
of the scene (b) visual sensor with an opening angle of
90.0◦

fig. 2), for the second field it is the relative velocity
∆v (relative to the actual observer velocity). The
grade of influence of the sensor information is related
to the relevance of the object which is dependent on
the Euclidean distance

dobj =
√
x2
obj + y2

obj

to the object, the angle Ψobj towards the object and
its relative speed ∆vobj .

An example for the extracted information accord-

vobj∆

dobj

ψ
obj

x

y

Object

ψ
Observing
Vehicle

Figure 2: Observer-centered coordinate system for be-
havior planning. (x, y) determines the lateral and lon-
gitudinal position in Cartesian coordinates, dobj and Ψ
represent radial coordinates. ∆vobj is the relative veloc-
ity of the object.

ing to the scene shown in fig. 1 is presented in fig. 3.
The view observed by the visual sensor is occupied
(bo = 1) by objects in a range from Ψ � −9◦ to
Ψ � −45◦ (fig. 3(a)). There are four objects in dif-
ferent distances (fig. 3(b)), of which three parking
object have the same velocity (negative velocity of
the observer) differing from the velocity of the lead-
ing object.

Based on the determined data and evaluating the
lane-information given by the simulation the stim-
uli for the neural fields are generated based on the

(a) (b)

(c) (d)

Figure 3: Information determined from simulation re-
sults (fig. 1). All values are determined according to
angle-coordinates Ψ of the actual view. Only objects
which can be observed by the sensor are included. (a)
occupancy bo of the view concerning objects (b) distance
do to detected objects (c),(d) relative velocity of the ob-
jects in x- and y-direction

task of cruise control. The generation of the stimuli
and the applied field dynamics are described in the
next section.

5 Field dynamics
The active control of the behavior of a vehicle is
limited to the control of steering angle and veloc-
ity. In order to determine the desired controlled
variables in dependency on sensor information,
knowledge, trajectory requirements and behavioral
demands, two one-dimensional neural fields as
presented in section 3 are designed. The field
positions z have been set to Ψ and ∆v respectively
to be able to directly apply the solutions generated
by the field evaluation. The excitations uΨ(Ψ) and
uv(∆v) of the fields are interpreted as a continuous
preference functions of which the position of the
maximum is the most preferred controlled variable.
For the stimulation of the fields the information
needed for the control has to be formulated in those
field-variables.

The field controlling the steering angle is influenced
by the position and velocity informations of other
road users (especially the guiding vehicle), by
information describing the free driving space and
by lane information. According to this information
the stimulus is determined according to three



stimulus-functions. The functions describe

• the danger estimate O(Ψ, t) for each detected
object taking into account the relative speed
and the distance to the object. The influence
on the field must be inhibitory as the collision
with objects has to be avoided.

• the street-course-factor L(Ψ, t), which is deter-
mined for one reference distance to ensure a
smooth trajectory within the actual lane. The
stimulus is designed excitatory with the center
of the lane showing the greatest attraction to
the vehicle.

• the direction towards ΨD(Ψ, t) of the leader.
The vehicle is supposed to follow the leader, so
the direction towards the leader has to be an
excitatory stimulus in the field.

The stimuli-functions are distributed over a certain
range of angles by a convolution with a Mexican
Hat function. The convolution is performed to re-
gard the variances and the distribution of informa-
tion over neighbored angle values. For each stimulus
the convolution

Si(Ψ, t) =
∫ γ

−γ
fMH,i(Ψ − Ψ′) · i(Ψ′, t)dΨ′ + ηi

is performed, where i can be replaced by O, L or
ΨD for the different stimuli-functions. The convolu-
tion is performed over the whole range of ψ′ε[−γ, γ].
The function fMH,i is parameterized with different
values for the three functions fMH,i(Ψ − Ψ′). The
threshold

η0,i =
{
ηO , i = O

0 , i = L,ΨD
is introduced, as a high inhibition value has to be
put on the field if a dangerous situation concerning
other objects occurs, which is supposed to out-range
the lane- and the leader-stimulus very fast. The
magnitudes of the different stimuli-functions must
be adapted to the desired effect on the neural
field. In case of cruise control a smooth trajec-
tory following the leader is demanded until the
influence of other objects requires different actions
(collision avoidance). The stimulus of the field
for the steering angle at time t is then determined by

SΨ(Ψ, t) = −SO(Ψ, t)+SL(Ψ, t)+SψD(Ψ, t) . (3)

The field controlling the velocity is influenced by
the actual velocity, the velocity to be reached
according to actual traffic rules and the relative
velocity of the leader. There a two stimuli-functions
which are imposed on the neural field:

• the stimulus SR(∆v) based on speed limits or
favored speeds is realized as a Mexican Hat
function centered at the difference between the
magnitude of the actual and of the intended
velocity. The magnitude of the stimulus is
chosen such that it is dominant if the distance
to the leader is greater than security distance,
otherwise the leader’s velocity should dominate
the change in velocity.

• the stimulus SvD(∆v) invoked by the leader is
a Mexican Hat function centered at the magni-
tude of the relative velocity of the leader. The
magnitude of the stimulus is proportional to
the distance and time derivative to the leader
(e.g. if the leader has a lower velocity than
the ruled velocity, the leader will approach the
observing vehicle, so the observer-velocity has
to be reduced proportional to the change of
distance to avoid a collision).

Both stimuli are supposed to have excitatory influ-
ence on the field excitation because each velocity is
supposed to attract the field. The change in velocity,
∆v, is determined as a result of the field dynamics,
where the position of the maximum represents the
advised change in velocity. The stimulus of the ve-
locity field is build additively

Sv(∆v, t) = SR(∆v, t) + SvD(∆v, t) . (4)

The field equation for both neural fields are given
by the formulation of the Amari-equation (eq. 1)

τΨu̇Ψ(Ψ, t) = −uΨ(Ψ, t) + hΨ + SΨ(Ψ, t)
+

∫
ΓΨ
wΨ(Ψ,Ψ′)ϕΨ(u(Ψ′, t))dΨ′

and

τvu̇v(∆v, t) = −uv(∆v, t) + hv + Sv(∆v, t)
+

∫
Γv
wv(∆v,∆v′)ϕv(u(∆v′, t))d∆v′.

The time constants τΨ and τv are chosen according
to the time scale on which the field is supposed to
react on the stimulus. The preactivations hΨ and
hv were set to the value of −1 for both fields. The
stimuli are determined according to eqs. 3 and 4.
Both interaction kernels wΨ(Ψ,Ψ′) and wv(∆v,∆v′)
are realized as Mexican Hat functions parameterized
according to eq. 2. As nonlinearities ϕΨ(Ψ, t) and
ϕv(v, t) tanh-functions shifted to the range [0, 1] are
used. The convolution is performed over the set ΓΨ

and Γv of the field-sites respectively.

The evaluation of the field-excitation is performed
by the determining the position of the maximum

NΨ(t) = arg max
Ψ

uΨ(Ψ, t)



for the change in steering angle and by

Nv(t) = arg max
v

uv(∆v, t)

for the change in velocity. For security considera-
tions thresholds NΨ,max and Nv,max for Ψ and ∆v
are applied regarding the maximal allowed range of
change. The applied change in steering angle is de-
termined by the minimum operation

Ψcontrol = sign(N�) · αNΨ min (|NΨ|,NΨ,max)

and the change in velocity by

Ψcontrol = sign(Nv) · αNv min (|Nv|,Nv,max) .

The variables αNΨ and αNv are velocity dependent
factors to take into account the dynamics of the ve-
hicle.

To examine the behavior of the designed cruise con-
trol different traffic scenes were generated by the
simulation program. The parameters of the field-
equations and the stimuli are determined by eval-
uating the reaction of the system for a variety of
scenes. The results for one simulated scene are pre-
sented in the next section to give an illustration of
the field dynamics.

6 Experimental Results
A result for the field excitations at time t0 is shown
in figs. 4 and 5. The sensor data were generated
from the scene described in fig. 1. According to
those data the stimuli of both fields were determined
and are shown as dashed lines in figs. 4 and 5 (for
presentation purposes the stimuli where shifted up-
wards from the zero-line). For the presented situ-
ation the field excitations have a single maximum
at Ψ � 1◦ and at ∆v � −9m/s. The presence
of single peak solutions proofs the reliability of the
controlled variable for Ψ and ∆v. The change of the
steering angle and the velocity according to field ex-
citations at time t0 is given in figs. 6 and 7. The
steering angle of the vehicle changes smoothly over
time (fig. 6(d)). The vehicle drives through the
right curve while keeping the lane and following the
leader. The change in the steering angle (fig. 6(c))
can be found within a small range, so a comfortable
trajectory was sustained. The stimulus (fig. 6(a))
as well as the field-excitation (fig. 6(b)) show nega-
tive values at the positions of objects to be avoided
(e.g. parking vehicles in view) and positive values
at angle positions to be favored (e.g. leading object
and lane). The maximum of the field-excitation is
shifted to the left as long as the parking vehicles
can be detected, so the vehicle does not drive in the

center of the lane but a little bit shifted to the left,
to keep a security distance towards the parking ve-
hicles.

Figure 4: Excitation of a neural field. Additionally
the stimulus according to objects, lane and leader are
presented (shifted to a virtual zero). The data material
is determined according to the scene presented in fig. 1

Figure 5: Excitation of a neural field for the change
in velocity. Additionally the stimulus according to the
intended and the leader velocity are presented (shifted
to a virtual zero). The data material is determined ac-
cording to the scene presented in fig. 1

The velocity (fig. 7(d)) is a smooth function of
time. The vehicle is not decelerated or accelerated
abruptly because no dangerous situation occured.
While the leader gets closer, the velocity of the ob-
sserving vehicle is reduced such that the leader is
within security distance finally. The change in ve-
locity (fig. 7(c)) is reduced smoothly until the ob-
serving vehicle reaches the speed of the leading ve-
hicle. The field-excitation (fig. 7(b)) amplifies the
decision imposed by the stimulus (fig. 7(a)).



(a) (b)

(c) (d)

Figure 6: Presentation of time dependent curves in
dependence of time [in s] and change in steering angle
Ψ [in ◦] for (a) the stimulus SΨ(Ψ, t) (b) the neural field
uΨ(Ψ, t) (c) the determined change in steering angle (d)
the angle position of the vehicle relative to a stationary
observer

(a) (b)

(c) (d)

Figure 7: Presentation of time dependent curves in de-
pendence of time [in s] and change in velocity ∆v [in
m/s] for (a) the stimulus Sv(∆v, t) (b) the neural field
uv(∆v, t) (c) the determined change in velocity (d) the
angle position of the vehicle relative to a stationary ob-
server

7 Conclusions
This paper shows the applicability of neural fields
to the problem of behavior planning in driver assis-
tance systems. The special behavior of cruise control

was selected and the stimuli of two one-dimensional
neural fields controlling steering angle and veloc-
ity were designed to fulfill this task. Ideal data
produced by a simulation program were applied to
test the performance of the designed fields. The
goal of producing single peak solutions of the field-
activation was reached for the presented scene. The
obtained values for the change in steering angle and
in velocity resulted in a comfortable trajectory and
driving speed. In the oncoming work the dynamics
of the fields have to be tested on a variety of scenes
with more complex object constellations (oncoming
traffic, moving obstacles, objects endangering the
vehicle). Further work is going to be invested in de-
termination of stimuli from additional information
(pre-knowledge, GPS-information) which can be su-
perimposed additively to the existing stimuli. The
examination concerning noise in the input data has
to be performed as well to be able to work on real
world data.
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