
A Deep Learning Approach to Mid-air Gesture Interaction
for Mobile Devices from Time-of-Flight Data

Thomas Kopinski
ENSTA ParisTech

858 Blvd des Maréchaux
Palaiseau, France

thomas.kopinski@ensta-
paristech.fr

Fabian Sachara
Hochschule Ruhr West,

Institut Informatik
Lützowstrasse 5

46236, Bottrop, Germany
fabian.sachara@hs-rw.de

Uwe Handmann
Hochschule Ruhr West

Institut Informatik
Lützowstrasse 5

46236, Bottrop, Germany
uwe.handmann@hs-rw.de

ABSTRACT
This contribution presents a novel approach of utilizing Time-
of-Flight (ToF) technology for mid-air hand gesture recog-
nition on mobile devices. ToF sensors are capable of pro-
viding depth data at high frame rates independent of il-
lumination making any kind of application possible for in-
and outdoor situations. This comes at the cost of preci-
sion regarding depth measurements and comparatively low
lateral resolution. We present a novel feature generation
technique based on a rasterization of the point clouds which
realizes fixed-sized input making Deep Learning approaches
applicable using Convolutional Neural Networks. In order
to increase precision we introduce several methods to re-
duce noise and normalize the input to overcome difficulties
in scaling. Backed by a large-scale database of about half
a million data samples taken from different individuals our
contribution shows how hand gesture recognition is realiz-
able on commodity tablets in real-time at frame rates of
up to 17Hz. A leave-one out cross-validation experiment
demonstrates the feasibility of our approach with classifica-
tion errors as low as 1,5% achieved persons unknown to the
model.

CCS Concepts
•Human-centered computing → Ubiquitous and mobile
computing systems and tools;

Keywords
Deep Learning, mid-air gestures, Object Recognition

1. INTRODUCTION
The benefit of adding depth sensing to mobile devices is

sometimes questioned as various difficulties have to be over-
come in order to meet satisfying demands. First and fore-
most, any 3D sensing device would have to compete with
already present hardware, able to capture data in real-time

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MOBIQUITOUS ’16, November 28-December 01, 2016, Hiroshima, Japan
c© 2016 ACM. ISBN 978-1-4503-4750-1/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2994374.2994392

and make it processable for interesting applications. With
Google pushing its ’Project Tango’ and the simultaneous
advancement of depth sensing technology for smartphones,
the prospect of developing useful applications capable of har-
nessing all of the device’s potential has come a step closer.
One of the first devices about to be released for the consumer
market is the PHAB 2 Pro with its specifically designed
Time-of-Flight (ToF) module IRS1645C. According to the
manufacturer, this is the only chipset integrating the nec-
essary pixel matrix, activation, analog-to-digital converter
(ADC) and interface on one chip.

This in turn means, there is little to no work dealing
with ToF technology for mobile devices. While the main
drawback is its imprecision, stemming mainly from material-
dependent factors such as the reflection coefficient of objects,
the noise occurring from ToF measurements can be reduced,
if the parameters are chosen properly for the application in
mind, allowing for illumination-invariant apps to be realized
at high frame rates. The main benefit of ToF technology is
indeed its capability of providing fast, reliable data in- and
outdoors - a feature highly desirable for any HMI context on
mobile devices. We present a novel contribution in this field
of research, coupling ToF technology with mobile devices to
demonstrate how a sophisticated data processing pipeline
makes 3D depth perception processable, allowing for mid-
air hand gesture recognition and interaction to be realized
in real-time. The core of our setup is a novel data transfor-
mation technique in order to be able to train a deep convolu-
tional neural network (CNN). Our setup constantly achieves
frames rates between 14-17Hz, more than sufficient for any
real-time applications to be realized on mobile devices. The
rest of this contribution is laid out as follows: In Section
2 we start by giving an overview over the most important
research conducted at the crossing of the disciplines of ToF-
based sensing, Deep Learning, Mobile Computing and Hand
Gesture Recognition. We go on to describe the setup of our
system by describing the hardware being put to use along
with an overview over the realized recognition pipeline with
its individual modules (Section 3). The backbone of our sys-
tem is a large-scale hand gesture database which we outline
in Section 4 with respect to the most relevant aspects for
this contribution. The main module is the feature gener-
ation which is described in Section 5. The results of our
cross-validation tests are then described in Section 6. We
evaluate the system’s performance in terms of computation
complexity in Section 7 and conclude this contribution with
a summary of the most important results and an outlook

1



Figure 1: The hand posture database. From left to right, top to bottom: ONE, TWO, THREE, FOUR, FIVE,
FIST, FLAT, GRAB, PINCH, POINT

(Section 8).

2. RELATED WORK
There is a large body of work on hand gesture recogni-

tion utilizing solely ToF sensors [3], [7], [8], [11], or coupling
them with RGB information [23], [18], [2], [22]. Suarez et al.
[21] provide a good overview over the common approaches
within this complex research field. Adding RGB information
to depth data adds the benefit, along with increased data
robustness, of simple object segmentation via e.g. skin de-
tection. However, one evidently loses the main advantage of
having an illumination-invariant scenario which only persists
if make use of ToF data in this case. Much of the research
conducted in the recent years was pushed with the influx in
availability of low-cost commodity hardware, mainly driven
with the release of the Kinect to the consumer market. How-
ever, its depth sensing technology itself is not suited to be
utilized in outdoor scenarios. There is a plethora of possi-
bilities to categorize the various approaches from either the
hardware perspective (sensors, invasive vs. non-invasive tech
etc.), or the software perspective with emphasis put on Ma-
chine Learning (ML) algorithms, algorithm design or even
HMI-related aspects such as applications or interface-related
questions. When confining oneself to ML aspects, numerous
approaches have been examined with either support vector
machines (SVMs, [5], [15]), Neural networks (NNs, [20], [9])
or more recently with Convolutional Neural Networks em-
bedded in the field of Deep Learning (DL, [16] [6]). NNs and
CNNs, as compared to SVMs, provide the advantage of only
having to create a single model for a multi-class classification
problem. Moreover, training time of SVMs increases signifi-

cantly with the number of training samples. CNNs have the
added benefit of alleviating the (possibly) very cumbersome
process of feature engineering by providing the optimal fil-
ters for the task at hand. Once trained, execution time for
a single classification remains low albeit there exist possibly
millions of parameters in a single model. Lane et al. ask
the question whether Deep Learning can revolutionize mo-
bile sensing [12] and to their findings the usage of SoCs and
DSPs on mobile devices is likely to boost the performance
of Deep Learning solutions in terms of e.g. robustness for
mobile sensing tasks such as activity, emotion and speaker
recignition. However, in this contribution highly satisfactory
results were achieved utilizing mainly CPU power therefore
still leaving room for improvement. Rallapalli et al. ana-
lyze the feasibility of utilizing very Deep Neural Networks
on mobile devices [17]. To their findings, the requirements
with regards to memory are rather high which is why several
optimization techniques and various sizes of NNs were imple-
mented in order to alleviate for these difficulties. However,
in this contribution the size of the CNN as well as execution
of the classification was realized in a more than satisfac-
tory manner as to allow for applications to run in real-time.
CNNs [14] have proven to be an efficient and robust model
for object recognition and have been successfully applied to
many fields of application, especially in object recognition
tasks from images [10], [13], [19], [4]. They however require
the input to be of fixed size, which poses a hurdle having to
be overcome when dealing with objects of varying size as is
the case in this contribution. Our approach differs in many
aspects from work related to the topic at hand. We present a
light-weight method of adding the feature of mid-air gesture

2



Figure 2: The Setup - tablet with a picoflex cam (in-
dicated with yellow circle)

Figure 3: Picoflex Camera

interaction on mobile devices independent of its surround-
ing environment. By coupling an off-the shelf tablet with
a small ToF camera we are able to take advantage of its
high frame-rates at which it delivers reliable depth images
of the nearby area. We overcome the problem of possibly
highly-noisy data by a sophisticated feature generation pro-
cess, the utilization of CNNs, classification thresholding and
frame averaging which overall allows for a robust demon-
strator setup. By normalizing the point clouds we moreover
are able to deal with the complex problem of scaling in con-
stant time. All in all, this setup allows for near-range mid-air
hand gesture interaction to be realized at high frame rates
on mobile devices, which, to the best of our knowledge, has
not been realized in this fashion so far.

3. SYSTEM SETUP

3.1 Hardware
The system setup consists of a Galaxy Notepro 12.2 Tablet

running Android 5.02. A Picoflex ToF sensor from PMD
technologies is attached to the tablet via USB. It has an
IRS1145C Infineonő 3D Image Sensor IC chip based on pmd
intelligence which is capable of capturing depth images with
up to 45 fps. VCSEL illumination at 850nm allows for depth
measurements to be realized within a range of up to 4m,
however the measurement errors increase with the distance
of the objects to the camera therefore it is best suited for
near-range interaction applications of up to 1m. The lat-
eral resolution of the camera is 224× 171 resulting in 38304
voxels per recorded point cloud (PC). The depth resolution
of the Picoflex depends on the distance and with reference
to the manufacturer’s specifications is listed as 1% of the
distance within a range of 0.5 - 4m at 5fps and 2% of the
distance within a range of 0.1 - 1m at 45fps. Depth measure-
ments utilizing ToF technology require several samplings to
be taken in order to reduce noise and increase precision.
As the camera allows several pre-set modes with a different
number of samplings we opt for 8 samplings taken per frame
as this resulted in the best performance of the camera with
the lowest signal-to-noise ratio.

This was determined empirically in line with the position-
ing of the device. Several possible angles and locations for
positioning the camera are thinkable due to its small dimen-
sions of 68mm × 17mm × 7.25mm. As we want to setup a

demonstrator to validate our concept the exact position of
the camera is not the most important factor however should
reflect a realistic setup. In our situation we opted for plac-
ing it at the top right corner when the tablet is placed in
a horizontal position on the table. However, it should be
stated here that any other positioning of the camera would
work just as well for the demonstration presented in this
contribution.

3.2 Recognition Pipeline
With the setup described in the preceding section, our

hand gesture recognition pipeline consists of several mod-
ules, of which this section should give a brief overview. In
order to train a CNN, a large number of hand gesture sam-
ples is required. To this end, we build upon a large-scale
hand gesture data base of 480.000 data samples which have
been acquired from 16 different individuals. The details of
this data base are outlined in the following section. In an
initial step the background is cropped via depth threshold-
ing leaving only palm, fingers and parts of the forearm. In
order to get rid of the irrelevant arm parts, we analyze each
point cloud with the help of a principal component analysis
(PCA). Analyzing a cloud with respect to its three dimen-
sions results in the Eigenvectors of each dimension as its
principal components. Cropping along the principal com-
ponent of the vertical axis allows for the removal of the ir-
relevant parts of the forearm. Figure 5 shows the effect of
forearm cropping as the arm in the image in the top left
corner (with PCA cropping) compared to the image in the
bottom left corner (without PCA cropping) is significantly
smaller in terms of PC-dimension. This is relevant for two
reasons: Firstly, the arm part would negatively influence
the feature generation process as meaningless feature would
be generated stemming from the forearm. Secondly, CNNs
require fixed-sized input to be trained and evaluated, there-
fore some form of data reduction to a fixed frame is required,
which is more difficult to achieve if the forearm part is un-
predictable in terms of its contribution to the feature gener-
ation process. The feature generation process for 3D point
clouds is the core of the gesture recognition pipeline and
it the specific 3D convolution of PCs to a format process-
able by CNNs what makes this approach feasible. Once the
data base has been completely transformed it serves as the
basis for training and evaluating our approach. We demon-

3



strate how our approach achieves more than satisfactory re-
sults by running a number of experiments in a leave-one-
out cross-validation scheme and moreover presenting a live
demonstration of our system, showing its real-time capabil-
ity, robustness versus changing illumination and invariance
towards rotation, translation and scaling (one of the most
difficult problems to solve). We are dealing with a complex
multi-class classification problem of 10 different hand ges-
tures. One single input vector presented to the CNN model
generates, once propagated through the whole network, 10
activation values in the output layer which can be compared
to class probabilities. We induce a thresholding measure to
suppress uncertain cases, i.e. cases in which the net would
produce uncertain results. The confidence threshold is cho-
sen empirically and fixed at 0.4. This, in combination with
an averaging window (5 frames averaging), stabilizes the live
performance of our system, yielding a stable hand gesture
recognition system running on a standard Samsung tablet.
We proceed to describe the content of our database, the
backbone of our system.

4. THE HAND GESTURE DATABASE
Our database contains point cloud samples from 16 differ-

ent individuals posing ten different gestures. Each gesture is
recorded 3000 times over various distances yielding 480.000
data samples.

To only capture the relevant data points which are part
of the user’s right hand, distance thresholding is introduced
during the recording. Points recorded by the sensor are sim-
ply cropped if above a certain threshold value Θ. Further-
more, the recording takes place in a predefined Volume of
Interest (VOI) to ignore irrelevant data points to the sides
of the user’s hand.

Our database comprises 10 different static hand postures.
The individual postures are denoted ONE, TWO, THREE,
FOUR, FIVE, FIST, FLAT, GRAB, PINCH, POINT (as
shown in Figure 1). These hand postures were chosen with
respect to a trade-off between meaningfulness and complex-
ity (in terms of disambiguation). Regarding the meaning
of the postures, all of them can be facilitated to represent
typical functions useful in various HMI scenarios. Pointing,
e.g. can be compared to the selection gesture while the flat
hand typically denotes the halt of a system and grabbing
is commonly employed in VR environments to pick up and
move an object. Counting from one to five, as indicated
by the number of fingers, are very generic gestures appli-
cable to various scenarios like selecting channels or levels.
The difficulty in disambiguation results from the fact that
the difference between some postures is defined by one finger
only (e.g., ONE vs TWO) which, depending on the distance
to the sensors, is equivalent to as few as 20-40 voxels.

The sensor is mounted in front of the user recording the
nearby environment from an orthogonal angle. Each pos-
ture is performed and recorded 3000 times. In order to in-
duce some variance into the data, each participant is asked
to translate and rotate her/his hand during the recording.
Furthermore, the recording area is divided into three zones:
near (15-30cm), intermediate (30-45cm) and far (45-60cm)
with respect to the distance between sensor and hand (cf.
Figure 4).

The result of such a recording can be seen in Figure 5.
The resulting PC is depicted for two different snapshots in
subsequent movements (top vs. bottom) of the same partic-

Figure 4: Setup for the recording of the database.
The three zones of the recording: Near, intermedi-
ate and far.

ipant from two different angles (left vs. right). Points closer
to the sensor are depicted in yellow color, points further
distant in a dark green color. Depending on the angle the
user postures her/his hand toward the sensor, more or less
light is reflected back and hence the precision of the mea-
surement suffers, which is another potential drawback when
utilizing ToF technology. Another possible source for noise
is the fact that depth measurement relies on the amount of
light reflected from the object, however too much light re-
flected over-saturates the measurement. This is visible by
the amount of noise (or outliers) existent in the image. In
the upper row, the user poses in a rather orthogonal angle
towards the sensor, therefore there are less outliers visible
towards the edges of the object. As compared to the bot-
tom row, more outliers are recognizable as can be seen in
the front view (left) and the side view (right) of the same
posture. Dealing with noise is an important factor for the
task of hand posture recognition in particular as depth sen-
sors typically have a lower resolution than RGB cameras
and therefore data samples suffering from much noise tend
to strongly impede the employed algorithms. Consequently,
no filtering or noise reduction techniques have been utilized
to remove said outliers. However, due to the movement per-
formed by each individual during the recording, the amount
of data points belonging to the forearm differs strongly as
can be seen in Figure 5 (top left vs. bottom left). Data
points belonging to the forearm carry no information neces-
sary to distinguish any of the posture in the database there-
fore we employed a cropping algorithm relying on a Prin-
cipal Components Analysis (PCA) of the hand-arm object.
Automatically removing most of the forearm results in a
smaller first principal component, and more relevant infor-
mation included in each sample, leaving only the palm and
the fingers. The database has been recorded with a Cre-
ative Gesture Camera which has a higher lateral resolution
for depth measurements (320× 160) than the Picoflex cam.
However, this does not matter for the gesture recognition
pipeline presented in this paper due to the way we set up
our features for the CNN and the subsequently following
normalization, which is described in the next chapter.

4



Figure 5: Sample recording of a hand posture. Top
row: The same posture from the front view (left)
and the side view (right). Bottom row: The same
hand posture in a subsequent state taken after the
snapshot in the top row (same angles). Noise and
outliers resulting from errors in measurement are
clearly visible when seen from the side view (right
column).

5. NETWORK ARCHITECTURE
In order to be able to deal with three-dimensional input,

this contribution presents an approach which transforms the
raw 3D data into a format readable by CNNs. The need for
a fixed-size input requires a specific partitioning of the 3D
input. Given a set of 3D data points (voxels) of arbitrary
extension (also referred to as point cloud), we propose the
subdivision of the entire cloud into a fixed number of cubes,
all having the same size. To this end, the maximal extension
of the data points has to be calculated for the entire problem.
This approach is explained in the following sections.

5.1 3D subdivision of point cloud input
In order to be able to work on 3D input data we employ

a modified LeNet 5 implementation of the Theano library
[1] with two convolutional layers. The input space is subdi-
vided into n3 hypercubes of fixed size. Each hypercube then
contains a subset of data points from the original object.
Depending on the density of the cloud, a certain number of
cubes remains empty. In order to avoid too many empty
hypercubes, which form the input for the CNN, we stretch
the data to fit into the raster. To this end, the input cloud
is normalized to the range (0,1) on each axis. This guaran-
tees the data to be evenly distributed over all hypercubes.
The value contained within a hypercube is determined by
the number of data points it contains.

Each slice of the input vector, which will be described here
on basis of an 8 × 8 × 8 sized example, has to be reshaped
to fit a designated pattern: The vector is reshaped in a way

that each row fed into the convolutional layer represents one
(x-y) slice of depth data in the original, resulting in an input
matrix of 8×64 (cf. Figure 6 showing this for the case of 43).
This way, a convolutional kernel of size 8 × 1 can be used
to initially convolve the depth-axis, resulting in an 1 × 64
output of the first kernel. No max-pooling is used in this
layer. The second layer reshapes this 1× 64 output to 8× 8,
so that a 3×3 kernel can subsequently be utilized. This layer
also implements 2×2 max-pooling, resulting in an output of
3×3. This output is then fed into the multilayer perceptron
(MLP) layer of the convolutional net, which determines the
output class.

5.2 Training setup
Training is performed on a single GeForce GTX 780 Ti

graphics card. The main limit here is the device’s memory
capacity as our training/testing data set exceeds it’s memory
capability.

We evaluate our approach on a data set consisting of
480.000 data samples obtained from 16 different persons,
each posing for 10 different hand gestures (cf. Figure 1).
Each of the gestures is represented by 3.000 snapshots sum-
ming up to 30.000 data samples per person. This would
result in the transformation and storage of 450.000 data
samples by the Theano library during training for a 15-
on-1 cross-validation (based on persons not on individual
samples), including weights as well as the subsequent im-
age transformation steps, which is more than the device can
store during the training phase. The amount of data samples
during training is therefore reduced to about 2.000 samples
per gesture, each randomly taken from the whole sample set.
This still yields a training set of 300.000 hand poses - more
than enough to validate our approach.
Two different experimental runs are performed: an initial
parameter search is started in order to determine the opti-
mal setup for the CNN architecture. To this end, the whole
data set is subsampled by randomly retrieving 100 data sam-
ples per person and pose, yielding 1000 samples per person
for 10 randomly selected individuals. The number of test
runs therefore amounts to:

n∑
i=0

k1
i

m∑
j=0

k2
j

o∑
s=0

k1
s

o∑
s=0

k2
s

p∑
l=0

k2
mp

Here, k1
i and k2

j denote the number of kernels within their

respective layers. k1
s denotes a specific combination for the

first layer, since we first transform the input as described in
Section 5.1 (cf. Figure 6). If k1

s = 0 this conforms to an 8×1
kernel with no max-pooling. If k1

s = 1 this corresponds to a
7×1 kernel with 2×1 max-pooling etc. k2

s defines the size of
the second kernel while kmp

2 consequently corresponds to the
kernel size in the max-pooling layer. The resulting kernels
from the first convolution layer are depicted in Figure 7.

6. EXPERIMENTS AND RESULTS
The results of our experiment run are presented in Table

1. We have conducted a series of experiments to test the
validity of our approach on unseen data. To this end, each
column represents the Classification Error (CE) achieved on
Person p from the database when the network is trained
on all the other data samples except on data coming from
person p. Thus Table 1 shows the results of an n-fold cross-

5



Figure 6: Setup of the CNN structure with two convolutional layers. Top row: First convolution step and
reshaping. Center: Second convolution step and max-pooling. Bottom: MLP structure and input.

Figure 7: The resulting kernels from the first filter grouped together for each posture from the hand gesture
data set (compare with Figure 1). The first layer of the CNN produces 20 different kernels. All 20 kernels
produced per gesture are grouped and presented in analogous order from left to right, top to bottom.

6



validation run on the presented database. Experiments are
conducted on an NVIDIA GTX 780 Ti using the Theano
implementation of a CNN. As memory is limited for prepar-
ing and storing the data samples only 2000/3000 samples
per gesture and person are randomly selected and taken for
training and validation. Consequently, each run trains a
CNN on 15 persons with 20.000 gestures samples each yield-
ing a training set of 300.000 samples and a validation set of
20.000 samples.

The results show slightly varying, however very satisfac-
tory performance. With the approach presented in this con-
tribution we are able to demonstrate the robustness of the
underlying methodology. Performance peaks with the model
obtained for person 13 (1.5% error) and for 10 out of 16
persons error rates around or far below the 15% mark are
achieved which is significant for such a large and diverse
validation set of unseen data. This underlines the fact that
CNNs paired with our data transformation technique are
able to generalize well on this complex problem. Consider-
ing the fact that we are able to produce up to 40 classifica-
tion steps per second this is more than enough to realize a
real-time application which produces satisfactory behaviour.
The main drawback is the somewhat poor performance on
persons 2, 4, and 7 with CEs ranging from 30,5% to 48,3%
and has to be attributed to various factors such as e.g. user
behaviour or noise in the measurements.

An in-depth evaluation shows the very specific way in
which the persons in question pose one and the same ges-
ture during the process of the recording with a rapid change
in finger positioning. This is one of the main reasons for
the system’s fluctuation in performance as the CNN tries to
capture all the possible variants of the given classes which
leads to problems in those cases where gestures are similar
and somehow posed ’wrongly’ by some participants. As for
the training time, most of the CNNs converged quickly with
as few as a thousand iterations (corresponding to roughly
1h train time) required for finding their global optimum in
most cases with only one case (more than 22K iterations for
person 14) requiring extensive parameter search. This is,
however, the case which simultaneously corresponds to the
model generalizing best with a CE of 1,5%. The termination
condition for training is the non-improvement of the CE on
the validation set for 100 subsequent epochs which in this
case demonstrates the potential of extended optimization
search. Execution time for a single sample falls well below
10ms which is negligible in regarding system workload.

7. SYSTEM PERFORMANCE
This chapter gives an overview of the performance of our

system. Figure 8 demonstrates how we are able to achieve a
light-weight 3D data processing pipeline able to run on 17Hz
on average. Each plot contains 800 data samples represented
by a single data point. Each data sample was processed by
the system as described in Section 3.2.

The plots show the distribution of the computation load
onto the various steps. Each diagram shows the plot for
number of points in the cropped PC versus computation
time which is shown in ms. The plot in Figure 8, top left
show the linear increase of computation time depending on
the number of points for the cropping algorithm which makes
sense, as the cropping does indeed need more time to pro-
cess a cloud with increasing PC size. For small clouds of size
< 500 voxels between 30-60 ms are required larger PC sam-

ples of 4000-5000 voxels require 60-80 ms processing time.
The plot in the top right shows the computation time for
rendering the resulting point cloud as displayed in Figure 9.

A linear dependency between computation time and PC
size is also visible, however this is negligible due to the fact
that this part is used for the visualization of the feedback
only and moreover ranges in a computation interval irrele-
vant to the process overall (avg.: 3ms). The computation
time to create the PPV features as described before and
process them through the network remains constant (nearly
constant in the case for feature generation) which is the most
interesting finding. Independent of cloud size input, it takes
mostly below 10 ms to process the data through the CNN
and around 1ms to compute the features. This is significant
and one of the most important findings of these statistics
as constant computation time is a highly desirable feature
when working on mobile devices with limited computation
power.
It should be noted here that although there is a number of
outliers in each plot, this is mainly due to the garbage col-
lector stopping all threads in the running application, thus
forcing the increased computation in each case. However,
most of the data samples clearly reflect the normal system
behavior. The bottleneck of the system is the cropping algo-
rithm having to deal with a large number of data points in
order to prepare the PC for feature generation. The average
computation time for a single data sample is 59.33ms and
the average frame rate is about 16.85 Hz.

8. SUMMARY AND OUTLOOK
This contribution presents a novel approach to hand ges-

ture recognition with ToF sensors on mobile devices. Cou-
pling a small ToF camera with a standard tablet allows for
a simple, robust demonstrator to be realized showing the
potential of the technology when used in line with modern
object recognition algorithms. To handle the data impre-
cision we introduce a robust feature generation technique
which realizes fixed-size input required by CNNs. Normal-
izing the point cloud data allows for hand gestures to be
recognized independent of scale. Near range interaction be-
comes possible at various distances in mid-air in a range of
15-50 cm. Rolling frame averaging and decision thresholding
further increase robustness of the system. We achieve recog-
nition results of up to 98,5% which corroborates the general-
ization capability of our contribution. With this setup, our
demonstrator works at frame rates of up to 17Hz - more than
satisfactory for any real-time application. This contribution
shows that mid-air hand gesture recognition is possible on
mobile devices with a single ToF sensor, adding this novel
interaction technique to the already present and well-known
touch interaction. Future work will be directed to further
increase precision, testing different classifiers as well as the
creation of interesting apps, which is, without a doubt, an
exciting and novel field of research.

9. ACKNOWLEDGMENTS
This work was funded by a scholarship grant of the EN-

STA ParisTech, Université Paris-Saclay.

10. REFERENCES
[1] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J.

Goodfellow, A. Bergeron, N. Bouchard, and

7



Table 1: CE per person (in percent, 2nd row) and number of iterations (in thousand, 3rd row) per run
Pers. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
CE 15.3 48.3 21.3 33.3 12.6 16.4 40.3 20.8 4.6 9.5 7.2 5.4 1.5 2.7 3.5 6.2
Iter. 8.3 1.1 3.7 1.5 1.2 0.6 1.8 5.5 11.9 1.9 7.9 9.1 1.0 22.2 3.6 6.5

Figure 8: Computation load for a single data sample.

Figure 9: Demonstrator with the cropped point
cloud (left) and the resulting interpretation of the
hand gesture (right). The remaining voxels after
PCA cropping are highlighted in green.

Y. Bengio. Theano: new features and speed
improvements. Deep Learning and Unsupervised
Feature Learning NIPS 2012 Workshop, 2012.

[2] K. K. Biswas and S. K. Basu. Gesture recognition
using microsoft kinect R©. In Automation, Robotics and
Applications (ICARA), 2011 5th International
Conference on, pages 100–103. IEEE, 2011.

[3] P. Breuer, C. Eckes, and S. Müller. Hand gesture

recognition with a novel ir time-of-flight range
camera–a pilot study. In International Conference on
Computer Vision/Computer Graphics Collaboration
Techniques and Applications, pages 247–260. Springer,
2007.

[4] D. Ciregan, U. Meier, and J. Schmidhuber.
Multi-column deep neural networks for image
classification. In Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on,
pages 3642–3649. IEEE, 2012.

[5] N. H. Dardas and N. D. Georganas. Real-time hand
gesture detection and recognition using bag-of-features
and support vector machine techniques. IEEE
Transactions on Instrumentation and Measurement,
60(11):3592–3607, 2011.

[6] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional
neural networks for human action recognition. IEEE
transactions on pattern analysis and machine
intelligence, 35(1):221–231, 2013.

[7] E. Kollorz, J. Penne, J. Hornegger, and A. Barke.
Gesture recognition with a time-of-flight camera.
International Journal of Intelligent Systems
Technologies and Applications, 5(3-4):334–343, 2008.

[8] T. Kopinski, S. Geisler, L.-C. Caron, A. Gepperth,
and U. Handmann. A real-time applicable 3d gesture
recognition system for automobile hmi. In 17th
International IEEE Conference on Intelligent
Transportation Systems (ITSC), pages 2616–2622.
IEEE, 2014.

8



[9] T. Kopinski, S. Magand, U. Handmann, and
A. Gepperth. A pragmatic approach to multi-class
classification. In 2015 International Joint Conference
on Neural Networks (IJCNN), pages 1–8. IEEE, 2015.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[11] A. Kurakin, Z. Zhang, and Z. Liu. A real time system
for dynamic hand gesture recognition with a depth
sensor. In Signal Processing Conference (EUSIPCO),
2012 Proceedings of the 20th European, pages
1975–1979. IEEE, 2012.

[12] N. D. Lane and P. Georgiev. Can deep learning
revolutionize mobile sensing? In Proceedings of the
16th International Workshop on Mobile Computing
Systems and Applications, pages 117–122. ACM, 2015.

[13] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back.
Face recognition: A convolutional neural-network
approach. IEEE transactions on neural networks,
8(1):98–113, 1997.

[14] Y. LeCun and Y. Bengio. Convolutional networks for
images, speech, and time series. The handbook of brain
theory and neural networks, 3361(10):1995, 1995.

[15] Y. Liu, Z. Gan, and Y. Sun. Static hand gesture
recognition and its application based on support
vector machines. In Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed
Computing, 2008. SNPD’08. Ninth ACIS International
Conference on, pages 517–521. IEEE, 2008.

[16] J. Nagi, F. Ducatelle, G. A. Di Caro, D. Cireşan,
U. Meier, A. Giusti, F. Nagi, J. Schmidhuber, and
L. M. Gambardella. Max-pooling convolutional neural
networks for vision-based hand gesture recognition. In
Signal and Image Processing Applications (ICSIPA),
2011 IEEE International Conference on, pages
342–347. IEEE, 2011.

[17] S. Rallapalli, H. Qiu, A. Bency, S. Karthikeyan,
R. Govindan, B. Manjunath, and R. Urgaonkar. Are
very deep neural networks feasible on mobile devices?

[18] A. Ramey, V. González-Pacheco, and M. A. Salichs.
Integration of a low-cost rgb-d sensor in a social robot
for gesture recognition. In Proceedings of the 6th
international conference on Human-robot interaction,
pages 229–230. ACM, 2011.

[19] K. Simonyan and A. Zisserman. Very deep
convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[20] E. Stergiopoulou and N. Papamarkos. Hand gesture
recognition using a neural network shape fitting
technique. Engineering Applications of Artificial
Intelligence, 22(8):1141–1158, 2009.

[21] J. Suarez and R. R. Murphy. Hand gesture recognition
with depth images: A review. In 2012 IEEE
RO-MAN: The 21st IEEE International Symposium
on Robot and Human Interactive Communication,
pages 411–417. IEEE, 2012.

[22] M. Van den Bergh, D. Carton, R. De Nijs, N. Mitsou,
C. Landsiedel, K. Kuehnlenz, D. Wollherr,
L. Van Gool, and M. Buss. Real-time 3d hand gesture
interaction with a robot for understanding directions
from humans. In 2011 Ro-Man, pages 357–362. IEEE,

2011.

[23] M. Van den Bergh and L. Van Gool. Combining rgb
and tof cameras for real-time 3d hand gesture
interaction. In Applications of Computer Vision
(WACV), 2011 IEEE Workshop on, pages 66–72.
IEEE, 2011.

9




