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Abstract— We present a novel approach for improved hand-
gesture recognition by a single time-of-flight(ToF) sensor in an
automotive environment. As the sensor’s lateral resolution is
comparatively low, we employ a learning approach comprising
multiple processing steps, including PCA-based cropping, the
computation of robust point cloud descriptors and training of
a Multilayer perceptron (MLP) on a large database of samples.
A sophisticated temporal fusion technique boosts the overall
robustness of recognition by taking into account data coming
from previous classification steps. Overall results are very
satisfactory when evaluated on a large benchmark set of ten
different hand poses, especially when it comes to generalization
on previously unknown persons.

I. INTRODUCTION

Being able to interact with a system naturally is becoming
ever more important in many fields of Human-Computer-
Interaction (HCI). Free-hand poses and gestures are one
means which are attributed in this way, thus developing new
interaction techniques is desirable in every-day situations,
especially with declining sensor costs. Depending on the en-
vironment there are parameters restricting the applicability of
these devices. Therefore, any approach has to be tailored to
its needs. In the automotive environment, factors as daylight
interference, obstacle occlusion, limited accessibility are only
some of the problems which require consideration.

We present an approach to recognize hand poses with a
single ToF-camera mounted on the center console. The so-
called point clouds coming from the camera are transformed
into a histogram, which in turn is used as input for the
training and classification of the hand pose by a Multilayer-
Perceptron (MLP). Our approach is purely data-driven in that
all relevant information comes from a large database contain-
ing samples belonging to 1 out of 10 different hand poses.
The use of a PCA-based hand cropping technique and robust
point cloud descriptors, together with a neural network-based
multi-class learning approach, make our system invariant to
rotation, translation and deformation issues, which moreover
works without the need to formulate a possibly complicated
hand model. Using a ToF sensor additionally provides ro-
bustness against daylight interferences.

Building upon prior results[1], [2], we extend our database
to have more variance in the data (by adding more persons),
and present a novel temporal fusion technique which
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boosts recognition rates by taking into account preceding
recognitions as well. Moreover, our temporal fusion of data
lets us take an initial step towards defining dynamic gestures
via static hand poses by taking into consideration several
snapshots taken over time.

We will first discuss the related work relevant for our
research (Sec. II). We then go on to describe the parametriza-
tion of the sensors and the setup of our system within
an automobile environment in Sec. III. Subsequently we
describe the recorded database in Sec. IV and afterwards
give an outline of the PCA algorithm used for the cropping
of the point clouds in the database as well as in real-time
(Sec. V). In Sec. VI we give an account of the used different
holistic point cloud descriptors and explain the meaning of
the parameter variations we will test. Sec. VII describes the
temporal fusion technique as well as the parametrization
of the MLPs. The key questions we will investigate in
Sec. VIII concern the generalization error of the MLP and
the performance of our system in a live demonstration as
well as offline. Lastly in X we give an outlook of potential
improvements of our system as well as our next steps.

II. RELATED WORK

With the ability to easily separate hand and forearm
from the background as well as robust applicability un-
der daylight conditions depth sensors in general and ToF-
sensors in particular provide an efficient means to deal with
tasks such as hand gesture recognition [3]. When trying to
differentiate between static hand postures relying solely on
depth information seems to be a viable approach as can be
seen in [4]. In most cases best results have been achieved
when combining RGB data and depth data simultaneously
however it remains difficult to achieve satisfactory results in
real time without exploiting RGB data, as typically either
the range of application is limited or the performance results
are dissatisfying. For example in [5] an existing system is
improved by adding a ToF-sensor but this approach strongly
relies on RGB information to disambiguate pixels and is thus
not feasible under difficult lighting conditions. Usually a
good performance result was achieved with a very limited
pose set or if designed for a specific application [6]. In
contrast we aim at a system being able to distinguish difficult
hand poses - sometimes varying only by a few data points -
in order to be able to realize an interesting in-car application.
The biggest disadvantage of ToF-Sensors is a low resolution
paired with strong noise which of course makes it difficult
to extract robust yet informative features. Improved results
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can be achieved when fusing Stereo Cameras with Depth
Sensors, e.g. in [7]. The authors of [8] utilize a single ToF-
Sensor in order to detect hand postures with the Viewpoint
Feature Histogram which is related to our approach as it
relies on the extraction of normal information from point
clouds. However we aim at a faster method and thus accord-
ingly improve our approach by simplifying the features as
needed and additionally have a more complex gesture set.
Moreover we aim at a real-time applicable system which is
essential for our application.

The Kinect has become popular in such application scenar-
ios as it extracts RGB and depth data simultaneously (e.g. cf.
[9]). However this approach relies heavily on finding hand
pixels in order to be able to segment the hand correctly.
Employing a sensor as the Kinect is not feasible in our
scenario as we aim for small sensor dimensions in order to
demonstrate a working system but first and foremost have to
avoid the system failing when it is exposed to direct sunlight.
Additionally we provide a data-driven approach as we learn
hand postures from a large dataset and thus avoid having
to define a complex model as in [10]. Moreover the system
mentioned again strongly depends finding skin-coloured pix-
els as well, to allow for segmentation in 2D and 3D as well
as hand-tracking. To our knowledge there is no comparable
work which is placed in the automotive environment. An
extensive overview of the methods and applications used
for hand gesture recognition is provided in [11]. One of
their insights is that most applications are in the field of
robot control, interactive displays/tabletops/whiteboards or
sign language recognition. In [12] a case study is made
of how the Kinect sensor can be utilised to control E-Mail
functions in a car through set of six hand gestures. While the
results remain unclear, except for the fact that gestures could
be well accepted as a means of control in a car, the gesture set
remains small and the effect of different lighting conditions
on the results is not discussed. We aim at a specific scenario
with a more complex application in the infotainment are thus
our defined gesture set allows a broader application range.
More comprehensive overviews are given in [13] and [14].

Besides these technological issues, considerable research
is conducted on how to design intuitive user interfaces,
potentially based on hand postures and gestures. In [15], the
authors investigate and compare different menu techniques,
whereas [16] presents a system using several projectors and
depth cameras named ”LightSpace”. The user is surrounded
by surfaces which are filled with content by the projectors.
He can interact with the walls, tables, etc. by gestures as
these are recognized based by several cameras from the
Kinect. Special use cases and fields of applications are
considered by several authors. In medical environments,
touch gestures are not applicable for reasons of hygiene.
Alternative touch-free approaches are explored in [17] and
[18].

More recently the Leap motion controller emerged as a
new means to obtain 3D data for hand gesture recognition.
The authors of [19] compare the performance of the con-
troller with the performance of the Kinect on a gesture set

Fig. 1. The camboard nano

Fig. 2. Driver interacting with the system.

of ten different hand gestures. Their key insights are the
fact that the Kinect sensor provides a complete depth map
as compared to the Leap motion controller which in turn
provides only a limited set of features such as the palm
position of the hand. The main difference is a much smaller
database compared to ours, the use of SVMs which increases
training time and the lighting environment. The whole setup
allows for a controllable scenario in terms of noise and
light fluctuations and is therefore not practicable for our
intentions.

In-car scenarios have been in the focus of development for
several years, as the driver can keep his hands close to the
steering wheel while being able to focus on the surrounding
environment. Pointing capabilities could be interesting to
control content in the head-up displays. A good overview
of automotive HMI is given in [20]. Hassani describes
advantages in user acceptance of in-air hand gestures in com-
parison to touch gestures seniors of Human-Robot Interaction
[21].

Scenarios as these call for robust data extraction tech-
niques which becomes feasible when making use of a ToF-
sensor. We demonstrate that it is able to achieve satisfactory
results for the disambiguation task of ten hand poses setting
up the recognition pipeline as described in the following
chapters.

III. SYSTEM SETUP

We integrate a single ToF Camera (the Camboard nano -
see Fig.1) into a car, fix it to the center console and connect
it to a Laptop with a Linux system installed, handling the
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computation task. No calibration is necessary other than
the exposure time set to 0.8ms and optimized for close-
range interaction. The camera itself has comparably small
dimensions (37x30x25mm) and measures distances by the
time-of-flight principle which makes it useful in any outdoor
scenario. The benefit of our approach is the fact that little to
no calibration is necessary as the robustness of our descriptor
and the neural networks compensate for minor changes in
camera setup. The camera is recording the designated inner
part of the car interior in which the driver is able to interact
with the system (see Fig.2). We focus on recognising the
subject’s (i.e. driver) right hand for the desired hand poses.
Therefore we defined the designated Volume of Interest
(VOI) within which we want to identify user input. Due
to driver behaviour, possible range and convenience as well
as obstacle occlusion (e.g. steering wheel) our VOI is of
trapezoidal shape with a depth of 27-35cm, a maximum
width of 60cm and a minimum width of about 45cm enclosed
by the Field of View(FoV) of the camera frustum. The
total height covered by our camera ranges from 30-35cm.
Furthermore we cover a space big enough to recognize the
most important movements in the car. Usually the driver has
his hand on the steering wheel or close to it or in other
situations leans onto the armrest, which differs significantly
in position and allows for longer interaction with our system.
By defining our VOI as described, we are able to cover all
of these possibilities.

IV. HAND GESTURE DATABASE

We record data from 16 persons, each displaying 10
different hand poses (cf. Figure 3). For each gesture, 3000
samples are recorded, summing up to 30000 samples per
person and a total database of 480000 samples. In order
to induce some variance into the data, during the recording
phase each participant is asked to rotate and translate their
hand in all possible directions. Moreover, to tackle the task
of scaling, for each gesture we define 3 different distance
ranges, in which the participant is asked to perform the
hand gesture in order to ensure sufficient sample coverage
for various distances. Each frame is recorded at a resolution
of 165x120px at 90fps with the Camboard nano, making it
robust to daylight interferences and thus applicable in any
outdoor scenario. This results in an alphabet of ten hand
poses: Counting from 1-5 and fist, stop, grip, L, point denoted
by a-j (cf. Figure 3). For the chosen probands, both male and
female, the size of the hand ranges from 8,5cm - 9,5cm in
width and from 17,0cm - 19,5cm in length.

V. HAND-FOREARM SEGMENTATION WITH PCA

A. Finding the principal axis of a point cloud

The main directions of the cloud are found using Principal
Component Analysis (PCA) [22]. PCA aims to find uncorre-
lated basis vectors for an arbitrary set of data vectors. Eigen-
vectors (also termed ”principal components”) are ordered by
the variance of data points projected onto them, allowing
efficient data compression by omitting principal components
of low variance. This algorithm is applied as shown below,

Fig. 4. Point cloud before PCA-cropping (left) and after (right).

using as input the set of n 3D coordinates of points in a
point cloud denoted xj , j ∈ [0, n]).
• The mean value x̄ = 1

n ·
∑n

j=1(xj) is computed.
• The scatter matrix is calculated :

S =

n∑
j=1

(xj − x̄)(xj − x̄)>

This matrix can be used as maximum-likelihood esti-
mate of the covariance matrix.

• The Eigenvectors of this matrix yield the principal
components.

We intend to cut off ’unnecessary’ parts of the cloud, i.e.
outliers and elongated parts of the forearm. In this case, the
principal components correspond to orthogonal vectors that
represent the most important directions in the point cloud.
The vector with the most important y-component allows to
recognize the axis hand-forearm.

The wrist, as the link between the hand and the forearm,
is detected in order to determine a limit for the cropping.
The employed method assumes that the distance between the
endpoint of the fingers and the centroid is an upper bound
of the distance between the centroid and the wrist.

To find the endpoint of the hand towards the direction
of the fingers, tests are made along the axis, starting at the
centroid and moving progressively upward. At each step, we
determine whether there are points within a designated small
neighborhood around the axis. The upper end of the hand is
marked if this number of neighboring points equals 0. Then
the bottom limit for the wrist is fixed at the same distance
from the centroid, but in the inversed direction along the y-
axis. All points below this wrist limit are cut out which is
exemplarily shown in Fig.4.

VI. THE PFH-DESCRIPTOR

The PFH-Descriptor (PFH-Histogram) [23] is a local de-
scriptor which relies on the calculation of normals. It is able
to capture the geometry of a requested point for a defined
k-neighbourhood. Thus, for a query point and another point
within its neighbourhood, four values (the point features or
PFs) are being calculated, three of which are angle values
and the fourth being the euclidean distance between these
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Fig. 3. The hand gesture database consisting of 10 different static hand poses.

two points. The angle components are influenced by each
point’s normal, so in order to be able to calculate them,
all the normals have to be calculated for all points in the
cloud. Therefore we are able to capture geometric properties
of a point cloud in a sufficient manner, depending on the
chosen parameters. These parameters have been thoroughly
examined in our previous work which led for example to an
optimal choice for the parameter n, the radius for calculation
of the sphere which encloses all points used to calculate the
normal of a query point. One major drawback is the fact
that the PFH-descriptor cannot be easily embedded into a
real-time applicable system as the computation cost becomes
too high, when we extend it to be a global descriptor. To
overcome this issue, we present a modification of the PFH-
Descriptor in the following section.

A. Modification of the PFH-Descriptor

Our version of the PFH-Descriptor makes use of its de-
scriptive power while maintaining the real-time applicability.
Using the PFH in a global sense would mean having to
enlarge the radius so that every two point pairs in the cloud
are used to create the descriptor. This quickly results in a
quadratically scaling computation problem as a single PFH-
calculus would have to be performed 10000 times for a point
cloud of 100 points. Given the fact that our point clouds
have a minimum size of 200 points up to 2000 points and
more, this is not feasible for our purposes. Therefore we
randomly choose 10000 point pairs and use the quantized PFs
to build a global 625-dimensional histogram. We calculate
one descriptor per point cloud which forms the input for the
neural network.

VII. TRAINING SETUP AND MLP PARAMETRIZATION

The novelty of this contribution is mainly embedded in the
core of the recognition pipeline, namely the fusion of features
and neuron outputs. This leads on the one hand to a real-
time applicable system and on the other hand to an efficient
boosting to the overall generelization performance possibly
extendable over many time steps. We show that by employing
fusion in this way, satisfactory results for a complex task can
be achieved effortlessly. The advantage of MLPs over other
methods such as SVMs lies in the quickly parameterizable
networks associated with a short training time which is
highly relevant as depending on the fusion strategy or the
application the optimal strategy requires extensive research
and testing. We have conducted thorough testing on the
database at hand and achieved similar scores for selected
cases with MLPs and SVMs in term of precision and recall.

A. Temporal integration of information

In order to improve the overall recognition rate of our
MLP-based approach, we present a temporal fusion tech-
nique. To this end the training and testing data have to be
prepared as follows: Firstly, we split training and testing data
for each run in such a way that data coming from one person
is not included in the training set, thus being able to measure
the generalization performance of our system on previously
unknown data. Secondly the training data has to be presented
in a chronological way in order to make the fusion technique
viable. The overall procedure is split into a 2-step approach.
In an initial step an MLP is trained on all the data from the
training set. To induce temporal information into the second
MLP, the training step has to be modified in such a way
that, at a given point in time t, not only the input from the
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feature vector is presented to the MLP, but also the values of
the output neurons of the first MLP classifying the sample at
time t−1. To achieve this, the training data for MLP 2 have
to be presented in a chronological order. Therefore the size
of the input layer of the second MLP is determined by the
length of the feature vector + number of the output neurons
of MLP 1 and for our case sums up to (625 + 10). This
approach can be motivated as follows: During the interaction
of the user with the system, multiple snapshots are taken
from the camera for a single hand pose. Thus information
considered ’over time’ i.e. for classifications coming time
points shortly before the current point in time can be used
to stabilize the results.

B. Neural network topology and training parameters

For the described two-step fusion approach the networks
are trained with standard parameters with variations on
the network topology. The input for the first network is
formed by the modified point feature histogram(MPFH) of
a processed point cloud as described in Sec. VII. The input
for the second network is formed by first classifying the
previous sample with the first network, calculating the output
neurons’ activities, and then concatenating these activities
with the MPFH of the current time step. Thus, the input
layer of the second network is of size n + 10, since both
networks have as many output neurons as there are classes
in the classification problem, i.e., 10. The network topologies
are therefore 625−h−10 and 635−h−10, respectively, with
variations possible in the hidden layer size h. We conduct
several experiments to obtain good values for h, which we
find in the range of 30-50 hidden neurons.

The network is implemented using the FANN library [24].
The training algorithm is the standard RPROP algorithm
and the activation function is the sigmoid function for both
hidden and output layers.

C. Real-time applicability

Our current system is able to perform feature extraction
and classification in real-time. More specifically, the segmen-
tation and cropping of the hand, the calculation of features
and the classification task are realisable at a frame rate of
30-50Hz, depending on the size of the point cloud.

VIII. EXPERIMENTS AND RESULTS

We perform tests on the data set comprising all 16 persons.
In order to compare our approach for the regular MLP
and the fusion technique, two classifications are conducted
for any input at a given point in time. Moreover, we vary
the number of neurons in the hidden layer to measure
whether we are able to improve the performance of our
algorithms. Tab. VIII sums up the most important results.
Each row shows classification accuracy for an MLP trained
on all the data except the person it is tested on, each test
being a generalization performance test. As an example,
column 1 then represents the performance of all four MLPs,
trained on persons 2-16 and tested on person 1. The overall
classification accuracy of an MLP - averaged over all persons

Fig. 5. Confusion matrix for the standard MLP.

Fig. 6. Confusion matrix for the fused MLP.

- depending on the number of neurons in the hidden layer
and the kind of fusion technique is shown in the last column.

First of all, it is observable that our fusion approach,
denoted MLP2, outperforms the regular approach (MLP1)
as the average MSE for the fused input is about 3% lower
averaged over all persons. For some individual cases we are
able to improve the results by up to 8% - here averaged
over all gestures of a single person - as for instance for
person 13 (improved from 90% to 98%) in the case of the
larger MLP. Increasing the number of neurons from 30 to 50
has a negligible effect as the improvement of our approach
compared to the standard MLP stays around 3% for all
variations of the sizes of the hidden layer. However, it is
possible to lower the average overall MSE by around 1.5%
from 14.75% down to 13.06%, when comparing the upper
two rows of Tab. VIII with the lower rows.

For those cases which perform worst in terms of recog-
nition rate, we are still able to improve the results by an
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participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Acc.
MLP1-30 81% 50% 69% 55% 76% 59% 56% 68% 79% 68% 88% 72% 95% 72% 87% 79% 72.1%
MLP2-30 83% 51% 72% 60% 79% 62% 58% 72% 85% 74% 89% 73% 97% 75% 91% 83% 75.3%
MLP1-50 83% 49% 69% 58% 79% 62% 57% 68% 84% 70% 89% 75% 90% 74% 90% 80% 74.0%
MLP2-50 86% 52% 74% 63% 83% 65% 60% 72% 89% 74% 90% 75% 98% 75% 93% 82% 77.0%

TABLE I
GENERALIZATION RESULTS FOR ALL 16 PERSONS AND BOTH MLPS, EACH WITH 30 AND 50 NEURONS RESPECTIVELY

average of 2-3% by the fusion technique. It is only for three
test persons that our fusion approach has little to no effect
(persons 11, 12 and 14) as the change of MSE remains
around 1% or below. On the other hand, in no case the
fusion approach leads to a deterioration of performance. A
more precise evaluation of the results shows that the temporal
fusion approach reduces the disambiguation problem to two
candidates.

More specifically, the confusion matrices (cf. Fig.5 and
Fig.6) show the correct classifications as well as the false
positives, for all ten gestures, here presented exemplarily
for person 13. Each row represents the (mis-) classifications
for each gesture shown on the left-hand border. So gesture
A (’one’) has been classified 2451 times (Fig.5) correctly
with the standard approach and 2801 times correctly with
the improved fusion technique (Fig.5). At the same time, the
same gesture has been mistaken 217 times for gesture ’two’
and this number has been lowered to 105 with the improved
approach. Simultaneously the number of false positives for
this gesture being mistaken for gesture I dropped from 243
to 81.
Moreover, both approaches work best for gestures D, F, G,
and H nearing 100% recognition rate, followed by gesture
A, B and J (around 90%) and C and I (around 75-80%)
referring to the standard MLP in Fig.5. For this person,
both approaches perform worst for gesture E (’five’) being
classified correctly with a precision of around 55% and 65%
respectively. More interestingly, it is observable that this
gesture is being mistaken for gesture G (’flat hand’) which
can be explained by the similarity of appearance of both
kinds of gestures.

Furthermore, the gesture J (’point’) was mistaken around
201 times (cf. Fig.5) for gesture F (’fist’) before our fusion
approach and 81 times (Fig.6) after fusion. This is a drop of
more than 60% and it reduces the problem to disambiguating
only gestures J and F from each other, which we are able
to handle individually and makes the recognition task much
easier. Similar observations can be made for gesture pairs
B → D and E → D for the example depicted as well as
across the group of participants as a whole.

IX. IN-CAR INFOTAINMENT APPLICATION

The framework was connected to a tablet running a
simulated infotainment system as can be seen in Fig.7.
The camera is mounted on the front console and connected
to a standard laptop with Ubuntu running the recognition

Fig. 7. Complete system: sensor, laptop and tablet mounted to the front
console visualizing the infotainment system

pipeline. The laptop in turn is linked via a wireless in-
terface with the tablet simulating an infotainment system
with switchable audiochannels, a USB and CD interface as
well as simulated incoming phone calls. The user can user
the standard gesture alphabet to interact with each of the
functions being able to control the system with her/his right
hand during a car drive.

X. OUTLOOK

In this contribution, we realised a real-time hand gesture
recognition system based on inexpensive and robust time-
of-flight cameras, intended for human-machine interaction
in an automotive environment. The whole system was
developed and implemented into an in-car environment
allowing the driver to use a gesture alphabet of ten static
gestures to interact with an infotainment system. The
recognition pipeline was realised by setting up a large
database, training two different MLPs fusing information
coming from features and neuron outputs. This method
of fusing MLP output coming from preceding time steps
with feature coming from current point clouds allows for
a significant generelisation improvement which we verified
on our database. Tests show very satisfying generalisation
performance for a set of 10 static gestures. Our system
works with an average frequency of 30-50Hz being limited
mainly by the ToF-camera itself, depending primarily on
the number of points in the captured point cloud. The
implemented PCA algorithm crops superfluous parts of
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the forearm which further stabilizes the results as we
assumed this was a major problem of the disambiguation
problem so far. Our approach fuses information coming
from classifications made before the current point in time
which, as we are able to prove, provides even more stability
to our system.

The next steps consist of adding a disambiguation module
for the most difficult cases as well as using our fusion
technique to extend our recognition from static hand poses
to dynamic hand gestures. Since we are able to reduce the
disambiguation problem with our current approach to two
cases in most situations this will result in a more stable
recognition module. Furthermore we can add even more
information over an extended time span as well as adding
confidence measures to our current decision module. We
intend to fuse our algorithms to create an improved gesture
recognition system by allowing interaction via static hand
poses and dynamic hand gestures. As we allow dynamic
interaction further features in the infotainment system such
zooming in/out in map applications will become viable.
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