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Abstract—We present a publicly available benchmark database
for the problem of hand posture recognition from noisy depth
data and fused RGB-D data obtained from low-cost time-of-
flight (ToF) sensors. The database is the most extensive database
of this kind containing over a million data samples (point
clouds) recorded from 35 different individuals for ten different
static hand postures. This captures a great amount of variance,
due to person-related factors, but also scaling, translation and
rotation are explicitly represented. Benchmark results achieved
with a standard classification algorithm are computed by cross-
validation both over samples and persons, the latter implying
training on all persons but one and testing on the remaining one.
An important result using this database is that cross-validation
performance over samples (which is the standard procedure in
machine learning) is systematically higher than cross-validation
performance over persons, which is to our mind the true
application-relevant measure of generalization performance.

I. INTRODUCTION

Recognizing (static) hand postures or (dynamic) gestures
from sensor data is a popular research field due to its many
areas of application in Human-Machine Interaction (HMI).
Interpreting user input in a non-immersive way not only allows
for intuitive interaction techniques, but moreover overcomes
limits presented by the prevalent technologies. Application
scenarios where the user is unable to interact with capacitive
touch screen technology due to her/him wearing gloves, such
as a sterile operation room, become feasible with contactless
gesture interaction. In order to achieve such a means of
communication one usually relies on either a model-driven
approach, where an underlying hand model is assumed as the
basis for the developed algorithms, or an appearance-based
approach. The latter relies on many data samples optimally
taken from many different sources as to capture variance and
the many possible exceptional cases. For the specific case of
hands this variance in appearance can occur due to many
reasons such as difference in hand size, various positioning
of the fingers/hand/person and, above all, the many different
ways in which humans express one and the same posture. In
order to be able to develop robust software capable of reliably
interpreting all these various cases, large databases form the
backbone of these kinds of systems. In this contribution we
present the REHAP (Recognition of Hand Postures) database,
comprising 10 different static hand postures (cf. Figure 1) with
over 1 million data samples taken from 35 individuals and

demonstrate its applicability in a specific scenario1. REHAP
comes in two separate sets: REHAP-1 consists of 600.000
samples recorded solely with a ToF sensor from 20 persons
while REHAP-2 is recorded with a calibrated ToF and RGB
sensor comprising 450.000 samples from further 15 persons.
Not only is this the only publicly available dataset of such
magnitude, it moreover allows for applicability in any kind
of indoor and outdoor scenario, simultaneously capturing the
variance in rotation, translation and most importantly scaling
- a crucial issue in the field of hand posture recognition.
This contribution is laid out as follows: Section II gives an
overview over the most important related work in this field,
explaining the novelties coming with our contribution. Section
III briefly describes the hardware employed for the recording
of the database followed by the description of the database
itself (Section IV). Section V describes a possible application
scenario within the field of Automotive HMI and gives a brief
outlook on further fields of application. Section VI shows the
performance of a standard classification technique to outline
the idea of the challenges and the possibilities of this database.
We conclude with a summary in Section VIII coupled with the
most significant insights as well as future work to be conducted
in this area.

II. RELATED WORK

Over the course of the last few years the body of work on
hand gesture/posture recognition has increased significantly.
Therefore the number of publicly available datasets has also
grown. One can distinguish between 2D [1], [2], [3] and 3D
datasets, the former consisting of image and/or video data
recorded by RGB cameras and the latter consisting of three-
dimensional information, or possible hybrid sets. Ruffieux et
al. [4] provide an extensive overview of the currently publicly
available datasets.

Large-scale datasets recorded from ToF sensors, however,
are sparse. The Dexter 1 dataset presented by Sridhar et al.
[5] focuses mainly on RGB data however also contains depth
information coming from a Kinect as well as the Creative Ges-
ture Camera (CGC) which provides ToF-capabilities. While the
set contains seven dynamic gestures performed repeatedly by

1download link: www.gepperth.net/alexander/postures.html
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Fig. 1. The hand posture database. From left to right, top to bottom: ONE, TWO, THREE, FOUR, FIVE, FIST, FLAT, GRAB, PINCH, POINT

one person, this does not exhaustively address the main issues
of data variance, translation, rotation and most importantly
scaling.

Simion et al. [6] present a ToF-based 3D database recorded
with a PMD[vision] R©CamCube 3.0. It contains 6 differ-
ent gestures coming from 10 different subjects, however it
currently does not seem to be publicly accessible. Datasets
recorded with the Kinect sensor often comprise a reasonable
number of classes, however are taken from few subjects only
and do not contain many samples. The ChAirGest dataset [7]
contains 1200 samples from 10 different subjects. It combines
the Kinect sensor with the XSens system to precisely record the
user’s dynamic hand movement. The SKIG [8] dataset contains
2160 hand gesture sequences recorded with a Kinect (1080
RGB sequences and 1080 depth sequences) and collected
from 6 subjects which makes in-depth algorithm validation
difficult from the viewpoint of sample variance. The ICVL
Hand Posture Data presented by Tang et al. [9] set contains
samples taken with the CGC describing the joint locations of
the participants’ hand. The Microsoft Research hand tracking
dataset presented by Qian et al. [10] was also recorded with
the CGC and contains 2400 samples from six persons labeled
manually. Supancic et al. [11] present a dataset of various
hand postures in everyday scenery holding different objects.
Snapshots were taken with the CGC and the dataset aims at
creating a standard format for evaluating algorithms for hand
detection in difficult scenery. The NYU dataset [12] contains
72757 training set samples and 8252 test set samples with
RGB-D data taken from 3 Kinect sensors (1 front view, 2

side views). Sharp et al. [13] present the FingerPaint dataset
containing a simultaneously captured video of painted hands
using both a prototype ToF sensor and a standard RGB
camera. The HandNet dataset presented by Wetzler et al. [14]
comprises a training set of 200.000+ samples of hand postures,
a test set of 10.000 samples and further validation data of
2700+ samples. Each sample was taken with the Realsense
RGB-D camera and shows the 6D postures of the hand as
well as the position and orientation of each fingertip.

Our contribution differs in many aspects from publicly
available datasets, most notably in that there exists no pub-
licly available set of comparable size and diversity, as our
dataset comprises >1million samples taken from 35 different
individuals. Moreover, using hardware with ToF technology
allows to test the developed algorithms regarding robustness
vs. various kinds of illumination interferences. Furthermore,
we provide data coming from a small, low-cost ToF sensor in
order to support flexible setups in any kind of environment.
As any large-scale solution will be forced to work with
cheap hardware (with higher noise on depth measurements),
our dataset models any such situation very closely and is
thus well suited for benchmarking realistic applications and
products. Moreover, by establishing two separate datasets, we
provide the possibility of directly comparing the same gesture
set recorded by two sensors of different depth resolution.
Any algorithm developed can be benchmarked with respect
to its versatility regarding a multitude of parameters: scaling,
rotation, translation, person- and sensor-related and depth vs
color dependence.



III. THE HARDWARE

REHAP-1 was recorded with the Camboard Nano. It is
comparatively small in size (37 x 30 x 25 mm) and able
to capture depth data with up to 90 fps with a resolution
of 160 × 120. Its high frame rate suppresses motion artifacts
caused by rapidly moving objects. This is of importance during
the recording of the database as the participants were asked to
move their hand and change their hand posture in order to
induce variance into the data. Moreover, its small dimensions
make it possible to quickly integrate the sensor into any kind
of environment as part of a demonstrator system (cf. Section
V). It furthermore has an integrated chip for the suppression
of background illumination (SBI) allowing for flexible use in
various lighting environments. REHAP-2 was recorded with
the CGC which provides twice the lateral resolution in depth
(320×160) while additionally recording the RGB information
of the environment. RGB pixels can be mapped onto the depth
pixels (voxels) resulting in an RGB-D point cloud. The depth
sensor of each camera operates with the ToF-principle: The
wavelength of light emitted from the infrared chip is modulated
with a fixed frequency making precise disambiguation possible
against any other kind of light source, therefore allowing for
robust data samples to be recorded in real-time for indoor as
well as outdoor applications.

Depending on the distance of the object, the precision of
the pixel-wise measurements suffers. Measurement errors vary
between 1cm-3cm if the object is several meters away and
additionally has a small reflection coefficient (i.e. absorbs most
of the light), nonetheless the reflection coefficient of hands
typically yields very satisfactory measurements. Uncropped
point clouds result in 19.200 and 38.400 voxels respectively
for REHAP-1 and REHAP-2.

The complete scene with the RGB values mapped onto
the voxels is depicted in Figure 2, before any form of hand-
background segmentation is applied.

IV. THE DATABASE

When referring to the databases, REHAP-1 comprises depth
information obtained from recordings with the Camboard nano
while REHAP-2 also carries RGB-information mapped onto
the voxels obtained from the CGC (cf. Figure 3 showing
this for a sample gesture). Data is recorded from 35 different
individuals, nevertheless both sets contain the same gesture set
and are labeled accordingly. Currently 20 persons are contained
in REHAP-1 yielding 600.000 data samples while 15 persons
are contained in REHAP-2 consequently yielding 450.000 data
samples, however we aim at complementing the second set
with 5 more persons to be able to better compare the developed
algorithms.

To only capture the relevant data points which are part
of the user’s right hand, distance thresholding is introduced
during the recording. Points recorded by the sensor are simply
cropped if above a certain threshold value Θ. Furthermore,
the recording takes place in a predefined Volume of Interest
(VOI) to ignore irrelevant data points to the sides of the user’s
hand. The resulting data is denoted a point cloud (PC) of a

Fig. 2. Full scene recording - RGB and depth info merged (top) and depth info
only (color coded, bottom): Depth thresholding allows for rapid segmentation
of the hand-arm region from the background. Cropping irrelevant arm parts
is achieved via PCA-segmentation.

posture and is saved in the point cloud data format (.pcd file
format), carrying the information about the data and relevant
meta information.

Our database comprises 10 different static hand postures
as recorded and described in Sec. III. The individual postures
are denoted ONE, TWO, THREE, FOUR, FIVE, FIST, FLAT,
GRAB, PINCH, POINT (as shown in Figure 1). These hand
postures were chosen with respect to a trade-off between
meaningfulness and complexity (in terms of disambiguation).
Regarding the meaning of the postures, all of them can be
facilitated to represent typical functions useful in various HMI
scenarios. Pointing, e.g. can be used to direct a robot or a drone
to a certain point of interest. The flat hand typically denotes
the halt of a system while grabbing is commonly employed in
VR environments to pick up and move an object. Counting
from one to five, as indicated by the number of fingers,
are very generic gestures applicable to various scenarios like
selecting channels or levels. The difficulty in disambiguation
results from the fact that the difference between some postures
is defined by one finger only (e.g., ONE vs TWO) which,
depending on the distance to the sensors, is equivalent to as
few as 20-40 voxels.



Fig. 3. Depth recording of hand posture TWO (right) and with the RGB
information mapped onto the depth pixels (left).

Fig. 4. Setup for the recording with the Camboard nano. The three zones of
the recording: Near, intermediate and far.

The sensor is mounted in front of the user recording the
nearby environment from an orthogonal angle. Each posture is
performed and recorded 3000 times. In order to induce some
variance into the data, each participant is asked to translate
and rotate her/his hand during the recording. Furthermore, the
recording area is divided into three zones: near (15-30cm),
intermediate (30-45cm) and far (45-60cm) with respect to the
distance between sensor and hand (cf. Figure 4).

The result of such a recording can be seen in Figure 5.
The resulting PC is depicted for two different snapshots in
subsequent movements (top vs. bottom) of the same participant
from two different angles (left vs. right). Points closer to
the sensor are depicted in yellow color, points further distant
in a dark green color. Depending on the angle the user
postures her/his hand toward the sensor, more or less light
is reflected back and hence the precision of the measurement
suffers. Another possible source for noise is the fact that depth
measurement relies on the amount of light reflected from
the object, however too much light reflected over-saturates
the measurement. This is visible by the amount of noise (or

Fig. 5. Sample recording of a hand posture. Top row: The same posture from
the front view (left) and the side view (right). Bottom row: The same hand
posture in a subsequent state taken after the snapshot in the top row (same
angles). Noise and outliers resulting from errors in measurement are clearly
visible when seen from the side view (right column).

outliers) existent in the image. In the upper row, the user poses
in a rather orthogonal angle towards the sensor, therefore there
are less outliers visible towards the edges of the object. As
compared to the bottom row, more outliers are recognizable as
can be seen in the front view (left) and the side view (right)
of the same posture. Dealing with noise is an important factor
for the task of hand posture recognition in particular as depth
sensors typically have a lower resolution than RGB cameras
and therefore data samples suffering from much noise tend
to strongly impede the employed algorithms. Consequently,
no filtering or noise reduction techniques have been utilized to
remove said outliers. However, due to the movement performed
by each individual during the recording, the amount of data
points belonging to the forearm differs strongly as can be seen
in Figure 5 (top left vs. bottom left). Data points belonging to
the forearm carry no information necessary to distinguish any
of the posture in the database therefore we employed a crop-
ping algorithm relying on a Principal Components Analysis
(PCA) of the hand-arm object. Automatically removing most
of the forearm results in a smaller first principal component,
and more relevant information included in each sample, leaving
only the palm and the fingers.

The following chapters demonstrate a sample infotainment
application as well as the experiments and results of a standard
pattern recognition algorithm. This is included as a perfor-
mance baseline and to establish a well-defined experimental
procedure, in order to allow other algorithms to be compared
meaningfully.



Fig. 6. Demo of our system integrated into the vehicle interior for
infotainment control.

V. DEMO SETUP

Being able to interpret hand postures in a non-immersive
way yields many possible fields of application, within a broad
range of scenarios such as healthcare (sterile operating room),
home entertainment control, robotics (e.g. drone control) or
any kind of HMI scenario. Within an automotive environment
the most obvious scenario is for infotainment control (cf.
[15]). Figure 6 shows a demo setup of an infotainment system
realized on a tablet.

The ToF-sensor is mounted in the vehicle interior on the
front console recording the VOI depicted in red. The VOI is
defined to allow for full freedom of expression in a similar
manner to the database recording. Data is cropped and pro-
cessed as described in Section IV by a standard laptop. This
is one of the many possible scenarios becoming feasible due
to the nature of our setup, hence this demonstrator can easily
be setup into any of the aforementioned scenarios allowing
for a quick analysis of e.g. any HMI-related questions. The
following section describes the design of the hand posture
recognition module and the most important results of a number
of experiments conducted on our database.

VI. EXPERIMENTS AND RESULTS

We ran a number of interesting experiments on both
datasets, however, due to space-related reasons, we confine
ourselves to the most important ones and outline the chosen
parameters only briefly. Due to the multiclass nature of the
problem, the number of persons and data present in the dataset,
we opt in favor of multilayer perceptrons (MLPs) over support
vector machines (SVMs) as our tests have shown this reduces
training time drastically and allows for a single model to
be utilized instead of training n(n−1)

2 SVMs. We utilized
the FANN library [16] to realize the training and test runs
for a and deal with the problem of multiclass classification.
Training was conducted for a maximum of 150 epochs with
standard parameters and one hidden layer of 100 hidden
neurons (chosen empirically). Input is presented in the form

Part. 1 2 3 4 5 6 7 8 9 10
MSE 13,2 46,7 26,8 39,7 14,9 35,4 37,7 30,3 11,1 26,5
Part. 11 12 13 14 15 16 17 18 19 20
MSE 10,4 22,6 3,5 25,8 6,3 17,3 3,9 13,6 23,6 6,1

TABLE I
GENERALIZATION PERFORMANCE OF THE MLP ON REHAP-1.

0 1 2 3 4 5 6 7 8 9 score
0 2717 56 10 13 4 36 1 4 74 39 0.92
1 74 2748 104 45 1 20 0 10 29 19 0.90
2 23 104 2767 62 29 4 9 20 60 4 0.90
3 9 20 50 2715 120 28 52 41 19 15 0.88
4 6 4 28 97 2620 18 81 86 21 14 0.88
5 25 8 6 28 5 2903 24 8 15 18 0.95
6 9 3 7 55 56 30 2751 9 1 3 0.94
7 1 10 13 40 52 10 7 2788 8 11 0.95
8 78 29 101 25 24 23 6 24 2638 30 0.89
9 47 21 12 11 0 21 5 2 26 2843 0.95

TABLE II
CONFUSION MATRIX FOR THE 30,000 RANDOMLY SELECTED SAMPLES

of a feature histogram, in turn based on the normals calculated
from a cloud (see [17] for in-depth explanation).

We perform n-fold cross-validation on the REHAP-1
database in order to test the performance of each model on
unseen data. We do this in two ways which we compare here:
sample-based and person-based.

a) Person-based cross-validation: 20 different MLPs
are trained, each on all the data samples from all persons except
one which is retained for testing. This amounts to 570.000
data samples for the training of one model and 30.000 data
samples for testing. During the test phase, each sample is
presented to the MLP and processed layer-wise to generate
the MLP’s output, determined by the neuron with the highest
activation. The results for the generalization of each model can
be seen in Table I. Results are presented as the classification
error (CE) for each person. For 5 persons we achieve a CE
of approx. 10% and less which is remarkable for a simple
MLP without parameter fine-tuning. However, the worst results
range at around a CE of 46,7% and overall we achieve an
averaged CE of 20,8%. Here we can clearly see one advantage
of our set: person-based comparison shows strong variance in
the overall performance of our models, however strong scores
can be achieved rapidly.

b) Normal sample-based cross-validation: For this ap-
proach, we train 20 MLPs as before, each on a randomly
selected set of 570.000 samples, not taking into account the
person they are coming from. This gives an average classi-
fication performance of

˜

92%. Table II shows the averaged
confusion matrix for this approach. The numbers 0-9 denote
the hand postures in the same order as presented in Section
IV. One row adds up to

˜

3000 samples therefore row 0 shows
the number of correctly classified samples (2717) for posture
ONE as well as the misclassifications per other class. The last
column show the amount of correctly classified samples for
this class.



VII. DISCUSSION OF RESULTS

Overall, performances reported in Sec. VI are very accept-
able but not perfect. It has to be kept in mind that these
experiments just serve to establish a procedure for comparing
results using this database, and are not itself intended to be ex-
tremely competitive. It is evident that there are many methods
to improve classification performances in a real application:
parameter optimization, other classification methods, temporal
stabilization by, e.g., Kalman filtering, fusion with RGB data
or introducing a reject option, just to name a few.

We furthermore observe that the averaged CE for sample-
based cross-validation is markedly lower than the averaged CE
for person-based cross-validation. The average CE per posture
class ranges from 12% to 5% which is also better for most
of the cases compared to the average values per class and
person. Experiments conducted on the REHAP-2 dataset yield
similar scores, albeit with differences across persons, naturally.
Our descriptor is normal-dependent which in turns means we
have to adjust the parameters (e.g. radius) for the normal
calculations, as the clouds in REHAP-2 are denser than the
counterparts in REHAP-1.

We believe that person-based cross-validation is the ap-
propriate measure to estimate generalization performance for
applications. First of all, because it is more conservative
which is always preferable in applications, but above all
because only person-based cross-validation guarantees a test on
completely unknown samples. Despite variations in distance or
rotation, different samples coming from the same person and
gesture class may be similar in nature, and thus not suited
for representing unknown test samples. We therefore argue
that the results of person-based cross-validation as stated in
Table I are the ones that other algorithms should compare their
performance to. It is a very interesting result of our work on
this benchmark database that these two measures differ to such
an extent, a fact that should always be kept in mind for gesture
recognition.

VIII. CONCLUSION AND OUTLOOK

We present the new publicly available REHAP-1 and
REHAP-2 database of >1million samples (grouped into 10
classes) for the specific purpose of hand posture recognition
from ToF data. As machine learning algorithms rely on the
availability of a large number of data samples representing
all possible variations, this contribution allows training and
reliable benchmarking of own algorithms according to well-
defined evaluation criteria. The experiments have shown that
significant performance differences can occur, depending on
the precise way of performing cross-validation, and we propose
that person-based cross-validation (a kind of leave-one-out
scheme operating on individual persons instead of samples)
is in fact the most accurate estimate of generalization per-
formance for applications. Our database allows for algorithm
comparison for a multitude of important parameters, sensor-
related questions and human-related factors. Due to its mag-
nitude, any developed algorithm can be evaluated by an in-
depth statistical analysis. We aim at launching a number of

experiments, optimizing our approached developed so far for
this problem which will be made publicly available along with
the results and the database itself.
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