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ABSTRACT

In this paper the proposed architecture for a dynamic scene analysis is illustrated by a driver assistance system. To
reduce the number of traffic accidents and to increase the drivers comfort, the thought of designing driver assistance
systems rose in the past years. Principal problems are caused by having a moving observer (ego motion) in predominantly
natural surroundings. In this paper we present a solution for a flexible architecture for a driver assistance system. The
architecture can be subdivided into four different parts: the object-related analysis, the knowledge base, the behavior-
based scene interpretation, and the behavior planning unit. The object-related analysis is fed with data by the sensors
(vision, radar). The sensor data are preprocessed (flexible sensor fusion) and evaluated (saliency map) searching for
object-related information (positions, types of objects, etc.). The knowledge base is represented by static and dynamic
knowledge. It consists of a set of rules (traffic rules, physical laws), additional information (GPS, lane-information) and
it is implicitly used by algorithms in the system. The scene interpretation combines the information extracted by the
object-related analysis and inspects the information for contradictions. It is strongly connected to the behavior planning
using only information needed for the actual task. In the scene interpretation consistent representations (i.e., bird’s eye
view) are organized and interpreted as well as a scene analysis is performed. The results of the scene interpretation are
used for decision making in behavior planning, which is controlled by the actual task.

1 INTRODUCTION

Systems for automated image analysis are useful for a variety of tasks. Their importance is still growing due to tech-
nological advances and increased social acceptance. Especially driver assistance systems have reached a high level of
sophistication. Fully or partly autonomously guided vehicles, particularly for road traffic, require highly reliable algo-
rithms due to the conditions imposed by natural environments. At theInstitut für Neuroinformatik, methods for analyzing
driving relevant scenes by computer vision are developed in cooperation with several partners from the automobile in-
dustry. We present a system extracting important information from an image taken by a CCD camera installed at the
rear-view mirror in a car.

The problems encountered in building a driver assistance system are numerous. The collection of information about
real environments by sensors is error-prone and incomplete. When the sensors are mounted on a moving observer, it
is difficult to find out whether a detected motion was caused by ego-motion or by an independent object moving. The
collected data can be analyzed by several algorithms with different features designed for different tasks. To gain the
demanded information, their results have to be integrated and interpreted. In order to achieve an increase in reliability
of information, a stabilization over time and knowledge about important features have to be applied. Different solutions
for driver assistance systems have been published. An approach published by (Rossi et al., 1996) showed an application
for a warning system for security distance and lane-keeping. An application being tested on highways and being based
on inverse perspective mapping has been presented by (Bertozzi and Broggi, 1998). (Dickmanns et al., 1997) presented
a driving assistance system based on a 4D-approach. Those systems were mainly designed for highway scenarios, while
the architecture presented by (Goerzig and Franke, 1998) has been tested in urban environment.

The content of this paper concentrates on a flexible, modular architecture of a driver assistance system working on eval-
uation and integration of the actual information gained from different sensors. The modules of the architecture are rep-
resented by the object-related analysis, the scene interpretation and the behavior planning. The accumulated knowledge
is organized in the knowledge base. The presented architecture is able to handle different tasks. New requirements to the
system can be integrated easily.

2 SYSTEM ARCHITECTURE

The proposed architecture is intended to produce different kinds of behavior according to given tasks. The structure is
shown in fig. 1. Information about the actual state of the environment is perceived by the system’s sensors. The data
collected by each sensor have to be processed and interpreted to gain the desired information for the actual task. This is
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done by the object-related analysis. It has to provide the scene interpretation with information. In the scene interpretation
the partly redundant results have to be interpreted and integrated to achieve consistent information. The behavior relevant
information has to be presented to behavior planning. The behavior planning unit is the final element that has to evaluate
which action should be taken to achieve the current task and which subtask has to be completed based on the actual
information from the scene interpretation and the actual knowledge. It also has to decide whether the current decision
or advice is reliable and can suggest the driver. The actual behavior planning should induce the scene interpretation to
produce the optimal amount of information needed.

 Scene
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 Behavior

 Sensors

 External
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Static Knowledge

 Task

Figure 1: Architecture for a driver assistance system.

In the following sections, the object-related analysis, the knowledge base, the scene interpretation, and behavior planning
are discussed in detail. As an example, anIntelligentCruiseControl (ICC) is embedded in the given architecture. The
ICC has to guide the driver according to a chosen object. This comprises advice for velocity adaptation so as to keep
a secure distance, for changing lanes and for choosing a new leading object, if the previous one is lost. In the shown
example the only sensor applied is a visual sensor being mounted on the rear view mirror of the observing vehicle. Other
sensors, like radar, could be integrated easily, as shown by (Handmann et al., 1998c).

3 OBJECT RELATED ANALYSIS

The object-related analysis can be subdivided into a sensor information processing and a representational part. The
structure is shown in fig. 2. The sensor information processing is specialized for each sensor. In a preprocessing step,
the sensor input is analyzed and relevant features for the sensor information processing are extracted. The representation
performs the consistent integration of the processed sensor data in sensor coordinates over time.

 Representations
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 Sensor Information Preprocessing

 Object Related Analysis

Figure 2: Structure of the object-related analysis.

3.1 Sensor Information Processing

In the sensor information processing part, the collected sensor data are preprocessed. Texture-, contour- and flow-field-
analysis are realized which was proposed by (Handmann et al., 1998b). Relevant features for the sensor information
processing (e.g., segmentation, classification ofRegionsOf Interest (ROI) or lane detection) are extracted and interpreted
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according to their capabilities. The processing can be performed for each sensor, also information from different sensors
may be fused as shown by (Handmann et al., 1998c). Objects are extracted by segmentation, classification and tracking
(fig. 3).

Figure 3: Vision-based object detection, object classification and object tracking.

3.2 Sensor-based Representations

The results of the sensor information processing stage are stabilized in movement-sensitive representations by introducing
the time dimension, which was presented by (Handmann et al., 1999). In this sense, a ROI is accepted as a valid hypothesis
only if it has a consistent history. This is implemented by spatio-temporal accumulation using different representations
with predefined sensitivities. The sensitivities are functions of the objects’ supposed relative velocity and of the distance
to the observer (fig. 4). In order to apply a time stabilization to these regions and to decide whether they are valid or
not, a prediction of their position in the knowledge integration part is realized. A competition between the different

Figure 4: Image and representation. The value in the representation indicates the activation for an ROI.

representations and a winner-takes-all mechanism ensures reliable object detection. An implementation of an object-
related analysis on vision data has been presented by (Handmann et al., 1998a, Handmann et al., 2000a). The results are
passed to the scene interpretation.

4 KNOWLEDGE BASE

The knowledge needed for the evaluation of the data and for information management is determined by the specific task of
driver assistance, physical laws and traffic rules. An improvement of the results can be achieved by the information from
the knowledge base. In the knowledge base, static and dynamic knowledge is represented. Static knowledge is known in
advance independently of the scenery of movement (e.g., physical laws, traffic rules). Dynamic knowledge (e.g., actual
traffic situation, scenery, lane-information) is knowledge changing with the actual information or with the task to be
performed (e.g., objects in front of the car). It can also be influenced by external knowledge like GPS-information. The
accumulation results of the movement-sensitive representations in the object-related analysis, i.e., can be additionally
supported by a preactivation depending on the dynamic knowledge (lane-information, fig. 5).

Figure 5: Oncoming traffic (image with lane-information, movement-sensitive representation without and with preactiva-
tion). The preactivated region is determined by the lane information. The value indicates the grade of activation.
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5 SCENE INTERPRETATION
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 Scene
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Figure 6: Structure of the scene interpretation.

The scene interpretation interprets and integrates the
different sensor results in order to extract consistent,
behavior-based information. The scene interpretation is
subdivided into a behavior-based representational and a
scene analysis part (fig. 6).

5.1 Behavior-based representations

The data prepared by object-related analysis have to be
integrated in order to detect and evaluate inconsisten-
cies and discrepancies. The incoming data (in sensor
coordinates) are transformed to a common description
base in the data integration. Actually object- and lane-
information are transformed to world coordinates with
respect to the moving observer. The positions of the de-
tected objects are determined in a bird’s-eye view of the
driving plane. The transformation rules follow the given position and direction of each sensor (e.g., the position and pitch
angle of CCD-cameras in the car) and the position of the car in the lane. The sensor parameters are determined from
the knowledge base (e.g., transformation equations for CCD-Cameras using a pinhole model presented by (Brauckmann,
1994)). Physical considerations concerning the movement and the position of potential objects are incorporated as well as
constant parameters (e.g., length of a vehicle according to its classification). Explicit information from the knowledge base
(e.g., physical rules and traffic rules, sensor evaluation factors) is applied in the knowledge integration. In this module, the
synchronized information from the different sensors is coupled using knowledge. In this part e.g., ROI detected above the
horizon are eliminated and lane positions are determined relative to the moving observer according to lane-information.
The properly organized information is presented to the behavior-based representations of the situation as well as to an

(a) (b) (c)

(d)

Figure 7: Image with segmentation results (a), tracking results (b), lane information (c) and bird’s-eye view (d).

internal memory implemented as an object list. The data representations comprise a bird’s-eye view representation, a
representation containing free driving space and trajectory information as well as object-related information if the actual
task requires it. Those representations are organized dynamically for stabilization of data and for performance of planning
tasks. An example for a dynamically organized bird’s-eye view representation is shown in fig. 7(d). The results of the
object-related analysis (segmentation, object tracking) and the lane-information are integrated to build the bird’s-eye view
representation.

The internal memory is fed by the results of knowledge integration as well as by results of the dynamics of the representa-
tions. The object list in the internal memory contains information of previously detected objects to enable time-stabilized
object detection and to determine object-related results. According to the data of the objects accumulated over time and
sustained by the representation-dynamics, an object-relatedTime To Contact Value (TTC mentioned by (Noll et al.,
1995)). The object and the observer are supposed to collide if they would occupy the same space at the same time. The
space is determined by the intersection of the estimated trajectories of the object edges.
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The prepared data (e.g., bird’s-eye view, TTC-estimation, object-list) are passed to the scene analysis for determination
of global measures and to behavior planning.

5.2 Scene Analysis

The scene analysis supports the driver assistance by evaluating the actual traffic condition as well as the scenery. The traffic
condition is assessed by evaluating the information from scene interpretation. According to the actual traffic condition
and the planned behavior a risk-factor

r =
n∑

i=1

|~vrel,i|
di

(1)

for actions is estimated. The risk factor evaluates the sum over all relative velocities|~vrel,i| between observer and objects
normalized by the distancesdi to each of then objects detected in the scene. The scenario can be determined using
GPS and street maps for investigating the kind of street, e.g., highway, country road or urban traffic. Depending on these
scenarios, different objectives have to be taken into consideration. The determined risk factor as well as the classified
scenario are passed to behavior planning. The scene analysis does not have be performed for every image, as e.g., the
kind of road does not change abruptly, so the evaluated data are stored in the knowledge base so as to remain available to
behavior planning.

6 BEHAVIOR PLANNING

Behavior planning depends on the given task and on the scene interpretation. Different solutions for the planning task
are possible. A rule-based fuzzy logic approach is described by (Zhuang et al., 1998) . An expert system is shown
by (Sukthankar, 1997). At theInstitut für Neuroinformatika system with complex behavior by means of dynamical
systems for an anthropomorphic robot was realized by (Bergener et al., 1999). A behavior control for autonomous vehicles
controlling the steering angle and the velocity by neural field dynamics (Amari, 1983) was presented by (Handmann et
al., 2000b). In the present system, a flow diagram controlled behavior planning realizing an ICC was integrated.

detected?

New Leader
Detect:

Safety and
Comfort Drive

Lane?

Safety and
Comfort Drive

Leader 

Information 

Leader

knowledge

in same
no

 

from scene interpretation,

Leader 
detected?

yes

yes

noyes

Signal:

Leader safely
Follow

Lane Change
Signal:

 
no

Figure 8: Flow diagram of signal behavior for ICC.

Behavior planning for the observer results
in advice to the driver not only based on
the intention of following the leader but
also taking into account the safety of the
own vehicle. This means that the object
cannot be followed or might be lost in case
of other objects or obstacles endangering
the observer. The signal behavior for the
main tasks is described by the flow dia-
gram shown in fig. 8.

At first it has to be determined whether the
leading object could be detected. If not, a
new one is searched automatically in the
same lane. A preceding object is recog-
nized as a leader if it has a consistent tra-
jectory on the actual lane, is positioned in
a reasonable (detectable) distance and if it
could be detected at least once in a cer-
tain number of previous time-steps. If no
leader can be found, advice for decelera-
tion or no change in action is given ac-
cording to safety considerations. A safe
and comfortable driving velocity has to be
achieved by taking the security distance,
the TTC to other objects and possible col-
lision positions as well as a general risk
factor (eq. 1) into account. In the case
of leader detection it is of interest whether
the leader can be located in the same lane.
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This decision is found by considering the lane occupancy and the trajectory of the leader. If the leader is detected in a
different lane or if the trajectory of the leader points to a different lane, an advice for lane change is given. If no lane
change can be performed, advices for a safe and comfortable ride are given. If the leader has been detected in the same
lane, the correct security distance has to be kept or reached by acceleration or deceleration. In this case safety and comfort
also have to be considered.

7 SIMULATION ENVIRONMENT

To test different assistance systems with different sensor constellations in different traffic conditions a simulation envi-
ronment was realized. In fig. 9 results of test environment are shown. The bird’s eye view of the sensor constellation on a
vehicle (black) with three cameras (white lines) and two radar sensors (black lines) is shown in fig. 9 (a). The appropriate
sensor output is shown in fig. 9 (b)-(f). For the ICC the camera and the radar sensor, both mounted in the front of the car,
are used. Fig. 9 (b) shows the output of the camera (aperture = 28.0724◦). Fig. 9 (e) illustrates the relative velocity[m

s ]
of the object hypotheses of the radar sensor (x-coordinate: distance[m], y-coordinate: angle[deg]).

(a)

(b) (c) (d) (e) (f)

Figure 9: Sensor simulation: (a) bird’s-eye view with mounted sensors on the vehicle; (b)-(d) camera output of the three
cameras; (e)-(f) plotted results of the radar sensor output.

Other assistance systems, e.g., blind-spot observer, can be realized with different combinations of the mounted sensors
(fig. 9 (a)-(f)) in the vehicle.

8 RESULTS

The proposed results have been gained from a visual sensor mounted on the rear view mirror of a car. The sensor data
were collected on a German highway. In fig. 10 the results of a scene with 1000 frames are shown. Four frames showing
special situations have been chosen to present the main characteristics of the system.

The first row (a)-(d) contains the segmentation results of the object-related analysis. In this part of the system ROI are
extracted. The second row (e)-(h) shows the tracking results of the object-related analysis. In image (e) the necessity of the
tracking module becomes obvious. An object not being found by the segmentation module (a) is detected by the tracking
module (e) because of its history. In row three (i)-(l) the lane information provided by the knowledge base is shown. The
three lanes of the highway are mapped from image coordinates to world coordinates. The bird’s-eye view representations
of the scene interpretation are shown in (m)-(p). The observing vehicle is symbolized by a dark triangle. The dimensions
of the representation correspond to[x, y] = [32m, 110m] in world coordinates. The observer is located at the point
[16.0m, 10.0m]. The observed objects are mapped to world coordinates according to the results of the object-related
analysis. The results of the behavior planning module are presented in (q)-(t). The white dot in the images represents the
actually chosen leader. If the leader has been chosen, the object is followed and a lane change is advised in case of a lane
change of the leader (s).
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Figure 10: System results for the task ICC. Object-related analysis: segmentation results (a)-(d), tracking results (e)-(h);
Knowledge base: lane information (i)-(l); Scene interpretation: bird’s eye view (m)-(p); Behavior planning: (q)-(t).

9 CONCLUSIONS

The proposed architecture shows flexibility for integrating different tasks in terms of a driver assistance system. Its
applicability is demonstrated on the problem of ICC. The main advantages of the presented architecture are a flexible data
integration structure, task modularization, and multi-level (object-related and behavior-related) representations. Different
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sensors (e.g., Radar, Lidar and image processing) can be incorporated for the analysis and interpretation of the scene to
increase the quality of the system. In the part of the scene interpretation, neural field dynamics (Amari, 1983) will be
used to stabilize the given object hypotheses with an adequate interaction kernel. For behavior planning a dynamical
system is supposed to be realized as well. A successful solution to a behavior planning using this method was presented
by (Handmann et al., 2000b).
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