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Abstract. In this paper, we propose a method to localise and track
persons in heavy industry environments with multiple cameras. Using
the OpenPose network, we localise the persons feet points on each cam-
eras image individually and perform according 3D transformations. With
prior knowledge about the camera settings in the environment, we use a
rule-based system to assess which sensor detections to fuse. We then ap-
ply Kalman filtering in order to stabilise the tracking. Due to a variable
image stack size, our method may increase accuracy if provided with ad-
ditional computational resources by processing more frames in real-time.
We have simulated a heavy industry scenario and use the recorded video
material and position data as a basis for our evaluation.
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gence · image processing

1 Introduction

Industry 4.0 requires software to support and enhance existing heavy industry
structures. Digital facility management systems help to increase productivity,
work safety and the production process transparency [12, 2, 14, 10]. For exam-
ple, concerning work safety, in a case of emergency, workers may want to follow
the shortest route to the exit. In a steel industry site, this route may lead across a
potentially dangerous area, for example a freshly rolled, hot sheet steel. Moving
on that sheet would cause the worker’s boots to melt with the hot steel, which
causes a high impact on the workers health and high costs for the corporation.
An intelligent work safety system may prevent such a situation by providing the
right warning at the right time using appropriate means.
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Such a system may use cameras and mobile devices to locate and identify per-
sons in dangerous situations. To do so, such systems need to gather and analyse
as much information about the production process as possible in realtime, put
them into context and perform the right actions. The project DamokleS 4.0 [5]
aims to develop a system to support employees in heavy industry using modern
hardware and software. In this particular contribution, we use camera images
to perform human foot point localisation and provide these detections to a rich
context model. Knowing the worker’s locations and roles within the production
process allows the context model to display valuable, individual information. In
our scenarios, augmented reality (AR) devices poll the context model in order
to show supportive advises to their current user. For example, an information
service provides relevant data about the workers current task to his or her aug-
mented reality device, as shown in figure 1. This way a worker receives context-
sensitive and role-specific information, for example the state of a machine, a
concrete work instruction or an evacuation route in case of emergency.

Fig. 1: Exemplary augmented reality information depending on the workers cur-
rent position. Left: an instruction to check a serial number. Right: displaying an
evacuation route in case of emergency.

In this paper we describe a holistic software approach to localise and track
workers in heavy industry settings, solely on the basis camera images, using
methods of artificial intelligence. We begin this paper by delineating this con-
tribution within the context of the project DamokleS 4.0 and presenting the
current state of the art. In section 3, a description of our software implementa-
tion explains the workflow of our program in detail. Then we present the setup
of our laboratory experiments and examine how we have collected our data in
section 4. We also statistically evaluate the accuracy of our system compared to
ground truth data, as provided by the augmented reality devices positioning. In
the last section we conclude with a short discussion of our final results, the pros
and cons of our implementation and possible future work.
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2 State of the art

Current state of the art research investigates person tracking techniques un-
der various points of view with different approaches. For example, [20] proposes
a person tracking algorithm for an autonomous unmanned aerial vehicle. In
this approach, a drone with a surveillance camera follows individual persons,
which allows for a very flexible surveillance system with the benefit of easy face
recognition. Compared to a stationary camera-based approach, the aerial ve-
hicle seems impractical for an industrial application, as the flying drone may
collide with moving objects like cranes, vehicles or even other persons. Con-
sidering person identification techniques, state of the art researchers focus on
methods of deep transfer learning [7, 4]. These methods allow for single-shot
person re-identification and prove that transfer learning may increase detection
performance in that domain using very little training data. For our heavy indus-
try application, we chose to identify workers via their wearable smart devices
instead of face recognition. To handle the problem of tracking multiple persons,
[9] utilise slow feature analysis [23]. [1] presents a computational framework for
interpreting person tracking data, which consists of four modules for tracking
instantaneous and short-time features as well as unsupervised and supervised
machine learning techniques for higher levels of abstraction.
Concerning the DamokleS 4.0 project [5], [17] describes the overall software ar-
chitecture underlying our context model [6]. Also, [17] sketched the essential
ideas that drive our test scenarios as well as the associated processes for imple-
mentation in mobile devices. The suggested scenarios concern workplace safety
as well as production and maintenance applications. The proposed approach
provides context-based support for factory employees during all these scenarios.
For context recognition, [17] proposes the usage of mobile device sensors and
external sensors devices mounted in the factory building, for example cameras
and beacons. [24] evaluated a variety of human detection methods and concluded
that the OpenPose system [3, 18, 21] suits our purpose best as it provides a most
reliable foot point detection, even under challenging image conditions.
In a related project we developed a video surveillance system to protect criti-
cal infrastructures [8]. In this project we designed a software architecture that
supports human operators to detect, track and recognize suspicious subjects in
case of an alert. The human operator may sort video frames by personally se-
lecting important features. He or she may flag suspicious subjects and reidentify
them in a video database. The camera-based data analysis consisted of several
image processing modules like a salient-based people detection and a histogram
of oriented gradients (HOG) algorithm based on the implementation of [16]. We
decided to use a GPU-based implementation to speed up the HOG algorithm
and fulfill our realtime requirements. The scenarios described in [8] resemble
those in the context of heavy industries with respect to challenges introduced
by different light conditions and the high need for fast algorithms.
On the basis of the referenced developments, we can state that the interaction of
the collected data and the constantly evolving algorithms holds a great potential
for the improvement of industrial processes and the everyday working life.
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3 Implementation

Our software architecture consists of three different modules, which operate on
a live video stream of multiple cameras in real-time. Figure 2 shows the pro-
gram flowchart of the single processing steps. Starting with a human foot point
detection system, for which we have used the OpenPose architecture [3, 18,
21], a coordinate transformation from image coordinates into world coordinates
provides input to the second module, a rule-based sensor fusion approach. The
rule-based system also prepares the trajectories for the third module, a Kalman
filter, by assigning them to linear tracks. All processing steps take place on the
same stack of images, guaranteeing real-time capability in a trade-off between
stack size and available computing resources. The more images the software sees,
the more accurate it gets. Maintaining real-time capability only depends on the
available computing resources. As input we present a stack of k images per cam-
era and choose k such that the program runs as fast and as accurate as possible.
Increasing k leads to more accurate detections at the cost of higher computa-
tion time. As output we obtain current person locations in world coordinates,
which we may send to a remote context model. The context model may relate
the locations with other data, for example to identify persons via smart devices.

3.1 Foot point detection and coordinate transformation

Before performing the foot point detection, we improve the camera images by
performing an adaptive histogram equalisation with a tile grid size of eight by
eight pixels [15]. We then localise the person’s foot points in camera image coor-
dinates using the corresponsing foot keypoints of the COCO model as provided
by OpenPose [3, 18, 21]. Our calibration process assumes that the person moves
on a flat plane, so we use a temporary constant height coordinate z = 1, which
we simply discard after transformation. To transform the camera coordinates
(x, y, 1)T into world coordinates (px, py)T , we use the intrinsic camera matrix
M , the rotation matrix R and the translation vector d, which we have obtained
via a standard calibration process using chessboard patterns [13, 11]. Construct-
ing an auxiliary matrix

R′ =

R0,0, R0,1, R0,2

R1,0, R1,1, R1,2

d0, d1, d2

 (1)

leads to a coordinate transformation that reads as follows:

(
px
py

)
=

x
y
1

 (R′M)−1 (2)

The resulting world coordinates relate to the origin of the chessboard pat-
tern. For multiple cameras, which observe distinct parts of the environment, we
perform multiple extrinsic calibrations and then translate the world coordinates
by the distance vectors between the different coordinate origins.
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Human footpoint detection by OpenPose

Camera 1        ....             ...                  ...           Camera 5

Rule-based systems for sensor fusion
and track segmentation

Kalman Filtering

Current person position

Fig. 2: The program flowchart of our person tracking procedure. The top row
shows example frames, taken from the same trial at the same time. From left
to right: cameras C1 to C5 as shown in figure 3. The person currently moves
within sight of cameras C1, C2, C5 but out of sight for cameras C3 and C4.
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3.2 Sensor fusion and track separation

The second module consists of rule-based systems, that start by fusing the de-
tections from the localisation module using prior knowledge about the camera
setup. To solve the problem of missing detections by noise, we perform an au-
tocompletion within the k frames: if in a frame we find no detection, but in the
previous and following frame we do, we replace the missing detection with the
geometric mean between the two successful detection. This way, we complete the
detections within k frames and maintain real-time applicability for an optimal
value of k. Knowing on which frame we have a detection, we put these detections
into a two-dimensional boolean matrix, which tells us about which camera yields
a coherent detection within the real-time window. Using this matrix, we apply
a rule-based system that decides which detections to fuse together. To do so,
a hard coded rule set reflects our prior knowledge about the concrete camera
setup in the environment. Upon this knowledge, we apply a set of conditional
clauses to decide the world coordinate fusion. If, for example, C3 and C4 de-
tect the same person, we calculate a geometric mean of the two proposed world
coordinates. To prepare the position data for Kalman filtering, we apply a rule
set that assigns each position to a unique track. Each track features a steady
motion, which simplifies the Kalman filtering procedure.

3.3 Kalman filtering

In order to smooth the resulting trajectory, we employ a Kalman filter [22] on
each of the separated tracks, as shown in figure 5. To initialize the Kalman
filter, we use a four-dimensional steady motion dynamics, capturing the persons
position (px, py)T as well as the persons current velocity (vx, vy)T with respect
to a fixed time step dt as given by the camera recording frequency:

F =


1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

 (3)

such that:


px
py
vx
vy


t+1

= F ·


px
py
vx
vy


t

(4)

We use a unit matrix to initialise the Kalman filter covariance matrix. For
the estimation process, we iterate over k subsequent positions, thus maintaining
real-time applicability.
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4 Evaluation

We use the recordings of a laboratory study to evaluate our person tracking
approach in a simulated industrial environment. In this study, as part of the
DamokleS 4.0 project [5], the test persons wear augmented reality glasses which
guide them through a parcour. During this course, they have to solve three
tasks and, for the last part, follow an evacuation route to the exit, as depicted in
figure 3. The original user study featured two different navigation modalities and
corresponding questionnaires, which aimed to evaluate the test person’s feelings
and attitudes towards this technology from a psychological point of view. For our
person tracking study, we discard this information and merely use the collected
video recordings.

4.1 Setup

Figure 3 shows the setup of our test course and the camera positions. As shown
in the example frames in figure 2, the test persons wear safety vests and move
in sight of a certain subset of our cameras. As shown in figure 3, the camera sets
(C1, C2, C5) and (C3, C4) observe distinct parts of the environment. Each set
has a unique calibration origin, which we relate to the parcour starting point by
a translation vector which we have measures using a scale.

4.2 Results

Our cameras recorded video footage with eight to twelve frames per second, so
we have used a stack size of k = 4 frames to maintain real-time applicability
with our hardware. As the augmented reality device recorded positions with a
rate of two positions per second, the cameras yield more data in the same time
as they record with a higher frame rate. Figure 5 shows the complete trajec-
tories for the ground truth data as provided by the augmented reality device,
the raw camera position estimations after sensor fusion, the separated tracks
and the final positions after Kalman filtering. The statistics about the travelled
distances, durations and velocities, as shown in figure 6, ignore the different tem-
poral resolutions induced by different recording rates. In order to compare the
mean deviations between the estimated camera positions and the ground truth
trajectories, as shown in figure 4, we solve the problem of the different temporal
resolutions by searching the nearest point in the ground truth positions for each
camera position.
The average of the mean deviations between the raw camera position estimates
and the ground truth data evaluates to about 0.67m, while the average of the
mean deviations between the Kalman filtered final positions and the ground
truth positions lies slightly lower at about 0.59m. This corresponds to the tra-
jectories, which come closer to the ground truth after Kalman filtering. Looking
at the trajectories in figure 5, we find a slight metrical distortion in the start and
end region, as only camera C2 observes this region. Analysing the histograms in
figure 6, we can state that both the travelled distances and the average velocities



8 N. Zengeler et al.

Fig. 3: The test parcour of our simulated industrial environment. The test persons
follow a route (blue) and solve a number of tasks. Five cameras (green) record
video footage.



Person Tracking in Heavy Industry Environments with Camera Images 9

come closer to the original distribution after Kalman filtering. Furthermore, we
can see that in the evacuation tracks, tracks number nine to twelve, the average
velocities show higher values.

Fig. 4: The mean deviation in meters between the estimated camera positions
and the ground truth positions from the augmented reality device for each test
person. The red bars show the mean deviations for the raw camera estimations,
and the blue bars show the mean deviations for the Kalman filtered positions.

5 Conclusion

We have contributed a method to evaluate person detection models for heavy
industry environments and published our source code, raw data and results under
[19]. From the metrical distortion that we have observed and described in section
4.2, we conclude that for a reliable location estimation a person must move in
sight of at least two calibrated cameras. To obtain accurate tracking results
on camera images, we strongly recommend the usage of additional means like
Kalman filters. For reasons of data protection, we decide to identify persons via
their smartphones in a context model instead of using face recognition on camera
images.
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(a) Ground truth (AR Data) (b) Raw camera detections

(c) Track segmentation (d) Kalman filtered

Fig. 5: Resulting trajectories, all scales in meters. The top left figure shows the
ground truth as provided by the augmented reality device, the top right plot
demonstrates the trajectories after the detection of foot points and the appliance
of the first rule-based system. In the bottom left plot we visualise the results
after track separation. As shown in the bottom right plot, the trajectories after
Kalman filtering closely resemble the positions from the ground truth data.
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(a) Durations ground
truth (AR Data)

(b) Distances ground
truth (AR Data)

(c) Average velocities
ground truth (AR Data)

(d) Durations (raw cam-
era)

(e) Distances (raw cam-
era)

(f) Average velocities
(raw camera)

(g) Durations (per track) (h) Distances (per track) (i) Average velocities (per
track)

(j) Durations (Kalman fil-
tered)

(k) Distances (Kalman fil-
tered)

(l) Average velocities
(Kalman filtered)

Fig. 6: The histograms showing overall statistics about the results after our image
processing procedure. From left to right: duration in seconds, travelled distances
in meters, average velocities in meters per second. From top to bottom: ground
truth data from the augmented reality (AR) device, raw camera detections,
statistics per individual track and the final Kalman filtered results.
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5.1 Discussion

In our evaluations we used the default parameters for of all our third party soft-
ware, like the OpenPose framework and the Matlab camera calibration toolbox.
Changing these hyper parameters may improve results. More computational re-
sources allows our approach to deliver better tracking results while maintaining
real time capability by increasing a single parameter, the image stack size. The
sensor fusion in form of a rule-based system relies on previous knowledge but
allows for easy changes due to its transparent rule set. Our model assumes that
the persons move on a flat plane, so it can’t tell different height levels from each
other. The rule-based systems, although transparent to the user and easy to
change, miss the flexibility to simply work for other setups. The same problem
arises for our rather static track segmentation. Our laboratory study only pro-
vided video material containing one single person in the parcour, so we did not
evaluate our system for multiple persons. Our systems makes no assumptions on
the number of persons, which we leave for future investigations.

5.2 Future Work

To further develop our approach, a more flexible track assignment might yield
a high profit. For example, a reinforcement learning agent may learn to open
and close track assignments dynamically. Also we might employ Kalman filters
on the detections in image coordinates to further stabilise the detections. Using
means of Transfer Learning, we may investigate how to easily adapt our models
to other situations.
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