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Abstract. Systems for automated image analysis are useful for a vari-
ety of tasks and their importance is still growing due to technological
advances and an increase of social acceptance. Especially in the field of
driver assistance systems the progress in science has reached a level of
high performance. Fully or partly autonomously guided vehicles, par-
ticularly for road-based traffic, pose high demands on the development
of reliable algorithms due to the conditions imposed by natural envi-
ronments. At the Institut für Neuroinformatik methods for analyzing
driving relevant scenes by computer vision are developed in cooperation
with several partners from the automobile industry. We introduce a sys-
tem which extracts the important information from an image taken by
a CCD camera installed at the rear view mirror in a car. The approach
consists of a sequential and a parallel sensor and information processing.
Three main tasks namely the initial segmentation (object detection), the
object tracking and the object classification are realized by integration
in the sequential branch and by fusion in the parallel branch. The main
gain of this approach is given by the integrative coupling of different
algorithms providing partly redundant information.

1 Introduction

Some systems presented in ref. [4, 23, 3] show the principal feasibility of driver
assistance systems based on computer vision. Although exclusively vision based
systems and algorithms are not yet powerful enough to solve all driving rele-
vant tasks, a large amount of different scenarios can be interpreted sufficiently.
Additionally sensors like RADAR and LIDAR extent the contents of sensor in-
formation necessary for building a reliable system. The main focus of our system
lies in combining various methods for the analysis and interpretation of images
and in the fusion of a large spectrum of sensor data to extract most reliable in-
formation for the final planning and for predicting of behavior of other vehicles.
The great variety of different scenarios as well as the high degree of reliability
necessary for the given task require an encompassing and flexible system ar-
chitecture. The requirements concerning the reliability of the reached solution,
the variety of geometric appearances of involved objects and the environmen-
tal constraints of both deterministic as well as statistical nature necessitate a
multitude of partial solutions based on different representations of the environ-
ment. Consequently, complexity and structure of the overall system have to be



adaptable to the increasing system complexity in order to allow accommoda-
tion of additional modules without degeneration of already accomplished partial
solutions. For this reason, even simple applications are encumbered by consider-
ations concerning the overall system architecture. Basically, the overall system
architecture can be divided into basic, fusion and integration algorithms. Basic
methods are those providing specific partial solutions under given constraints.
Results and application of the individual algorithms are not independent, result-
ing in an increase in redundancy making the overall system secure and reliable
given a suitable coupling architecture. The necessary methods for fusion and in-
tegration ensure a flexible cooperation of the basic building blocks as well as the
integrative derivation of results. In a similar vein, a sequential data transmission
and system dynamics are necessary in order to build up an overall system and
giving solutions to complex tasks.

2 Image Processing for Driver Assistance

The fusion of different sensor information and preprocessing results increases
the performance of the system. Basic algorithms for themselves are specialist
for a specific kind of sensor information. Figure 1 shows the different types of
information principles depending on the spatial relationship to the vehicle. With
respect to the requirements of various applications optimally adapted algorithms
are built. In the area F1 contour based methods are chosen. On the one hand the
sparse coding (edges) of the intensity information is sufficient due to the high
resolution of the objects in the image and on the other hand it speeds up compu-
tation time for real time applications. Here, we mainly use a feature called local
orientation coding (LOC) [8]. In the field F2 we use motion detection algorithms
to segment overtaking and overtaken vehicles. In contrary to other applications
we use a pattern tracking based algorithm which ensures high stability. The long
distance field F3 is analyzed by texture based methods. The low spatial reso-
lution makes an edge based processing infeasible. Nevertheless the integrative
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Fig. 1. Separation of the road in fields F1, F2 and F3 in which different algorithms
can be applied optimally.



characteristics of texture analysis provides good results by separating the ob-
jects from the background by use of their texture. In the area of preprocessing,
a multitude of different methods for initial segmentation, object tracking, and
object classification has been developed in the context of current research. A few
inherent tendencies appear remarkable.

– Previous work often was based on the use of higher features, meaning the
generation of a sequence of features beginning at the iconic (image-based)
side and continuing to the symbolic side. There are two main reasons to do
this. First the historic rooting of image processing in material and surface
inspection for quality control has lead to the existence of theoretically well-
founded and practically tested algorithms. Second the symbolic features are
commonly used for compact coding purposes, so that processed data amounts
can be largely reduced for accommodating limited processing resources. The
breath-taking evolution of processors has particularly alleviated the impact
of this last constraint. In addition, it appears that particularly in the context
of limited sensor resolution (i.e., in long distance regions) algorithms can be
employed that rely on statistical measures of extensive ‘early’ (in the chain
of processing) feature sets. These algorithms supplement the spectrum of
methods explicitly in more traditionally oriented algorithms.

– Often a formulation as an optimization problem can lead to implicitly robust
solutions avoiding disadvantages of explicit methods (e.g., the correlation of
model with image features, the correspondence problem). In this area the
increase in available computational power has contributed to the scientific
progress, as well.

– Particularly in natural environments, flexible algorithms possessing a certain
learning capability for input data driven adaption are preferably used.

3 The Basic Algorithms

At the Institut für Neuroinformatik algorithms providing partial solutions for
object detection, tracking and classification have been incorporated in an driver
assistance architecture. Namely the following enumeration gives an overview over
the applied methods.

– Initial Object Detection: local orientation coding (LOC) [7][8], polygon ap-
proximation of contours [5], use of local symmetry [25], pattern motion anal-
ysis [25], texture analysis based on local image entropy [18], local variance
analysis [24] and local cooccurrence measures [25], shadow analysis [10], color
analysis [12], and RADAR mapping [24].

– Object Tracking: Hausdorff distance matching [10], parametric optimiza-
tion [21] and cross entropy [19].

– Object Classification: local orientation coding [25], Hausdorff distance [25],
cooccurrence analysis [9], and parametric optimization [21].

All algorithms can be parted in methods working on differential information
(e.g. edges) and integral measurements (e.g. texture). For the application types,



initial object detection, tracking and classification, a description of the actually
used algorithms is given.

3.1 Initial Object Detection

The main motivation of using multiple simple methods is that the development
of designing one basic method solving all conceivable scenarios seems to be im-
possible. Therefore in order to provide reliable results and to ensure a fast and
robust processing a coupling of specialists is carried out. Some methods are de-
scribed shortly in this section.

Local Orientation Coding: The ’raw’ gray scale (intensity) images are prepro-
cessed by a method we call local orientation coding (LOC). The image features
obtained by this preprocessing are bit strings each representing a binary code
for the directional gray-level variation in a pixel neighborhood. In a more formal
fashion the operator is defined as

b′(n, m) =
∑

i,j

k(i, j) ·u(b(n, m)− b(n+ i, m+ j)− t(i, j)), (i, j) ∈ neighborhood

where b(n, m) denotes the (gray scale) input image, b′(n, m) the output repre-
sentation, k a coefficient matrix, t a threshold matrix and u(z) the unit step
function. The output representation consists of labels, where each label corre-
sponds to a specific orientation of the neighborhood. An adaption mechanism
for the parameters t of the coding algorithm yields a high level of flexibility with
respect to lighting conditions [8].

Shadow Analysis: The detection of shadows is realized by thresholding the in-
tensity image, some morphological processing and a region clustering stabilized
over time. As already introduced in [20] the shadow underneath a vehicle can
be used as a sign pattern. For the task of the initial object detection the grey
level of the road is analyzed in order to extract a threshold τ for the shadows.
Furthermore we select those LOC features that expose an horizontal orientation
and correspond to a light-to-dark transition (scanning the image upwards) and
group them in clusters. These clusters are imposed in further constraints (i.e.
from the camera geometry [17]) and finally build the initial hypotheses (or Re-
gions Of Interest).

Texture Analysis (Entropy, Cooccurrence): Besides operators like inten-
sity derivation (gradients and the LOC) texture analysis as an integrating op-
erator has been used successfully in image processing. The term texture is not
explicitly defined. Globally texture is a description of image pixels or texture
elements (groups of pixels) belonging to a specific texture class due to their
spatial arrangement to other elements. Texture depends inherently on scaling.
The spatial and intensity relationship between these elements define the kind of
texture. Strong variation of intensity in a small area lead to fine textures and



low variations produce coarse textures. Furthermore textures can be parted into
properties weak and strong. Weak textures are described mostly by statistical
methods. In strong textures the spatial interaction of elements are somewhat reg-
ular. Their recognition is usually accompanied by an exact definition of texture
primitives (grammars). Actually two different methods for analyzing are com-
monly used: statistical and syntactic. In our applications we mainly work with
statistical texture description. Every kind of texture is represented by a multi-
dimensional feature vector in order to evaluate a statistical pattern recognition
for every texture class based on suitable decision rules.
The local image entropy (LIE) has been developed at our institute [18]. In this
method an estimation of the information contents of a pixel and its neighbor-
hood is given. A saliency map is calculated so that a separation of objects and
background can be evaluated. A detection of road-users and the free driving
space can be easily done.
One of the fundamental tools in texture analysis, the cooccurrence matrices,
were suggested by ref. [13]. In here, the probability of the cooccurrences of pixel
pairs under predefined geometrical and intensity constraints are measured. These
constraints are determined by the intensity ratio and the spatial relationship
(angle and distance) of two image points. A definition of the cooccurrence matrix
follows. In an image window I of size M×N and a maximum number of different
gray values Q the cooccurrence matrix P is calculated under parameters angle
α in a given distance d as follows

Pd,α(i, j) =
number of pairs((x,y),(x′,y′)), verifying (d,α) and I(x,y)=i and I(x′,y′)=j

number of all pairs in image window((x,y),(x′,y′))

A calculation of texture features is performed in most of the applications under
four directions (α = 0, 45, 90, and 135) and different distances d = 1, 2, . . . . A
rotation-invariance can be obtained by accumulation of the matrices of the four
directions. The amount of scaling variance can be reduced by calculating the
matrices over different distances. Julesz showed that the human perception of
texture is based on cooccurrence statistics. Haralick, Shunmugan, and Dinstein
suggested in [13] 14 different statistical features which can be obtained from the
cooccurrence matrices. In our field of research cooccurrence matrices are mainly
applied to the initial segmentation. The matrices are calculated in overlapping
windows. Features like energy, entropy, contrast, correlation and the highest
cooccurrence of [13] are combined for the segmentation process.

3.2 Object Tracking

Algorithms for object tracking are the most important if a stabilization over
time or a prediction of e.g. trajectories are demanded. Some methods for object
tracking are introduced in this section. As it can be seen in figure 1 the tracking
algorithms find their applications depending on the spatial resolution of the im-
ages. In the near distance field the Hausdorff distance or order statistics are used
as a measurement based on contour codes (LOC). Here we proceed to present
the more stable Hausdorff distance tracker that has been tested successfully on



a large set of different image sequences (figure 2). For further details of the ap-
proach using order statistics see ref. [26]. Supplementary in the long distance
field the texture based cross entropy provides optimally results.

Hausdorff Distance: The geometric comparison of shapes is a fundamental
tool for model-based object recognition. Most of the methods used in object
recognition systems refer to a similarity measure between the model features
and the image features [22]. The Hausdorff distance measures the divergence of
a set of features with respect to a reference set of features [16]. These sets mostly
describe object contours in our application. The comparison of similar object
contours yields small distance values, whereby objects with different contours
yield larger distances. The directed Hausdorff distance h of one point set A
against a point set B is the maximum of the minimum distances of each point
of set A to the points of set B. The final Hausdorff distance H is simply the
maximum of the two directed distances.

h(A, B) = max
p∈A

min
q∈B

‖p − q‖, H(A, B) = max(h(A, B), h(B, A))

Fig. 2. Objectdetection, objectclassifica-
tion and objecttracking on german Auto-
bahnen and german Landstraßen

The partial Hausdorff distance per-
forms a ranking of these minimum
distances and considers a fraction of
them instead of the maximum. Un-
like the classical correlation meth-
ods the Hausdorff distance uses Min-
Max operations instead of multipli-
cations, so it is more efficient in time.
The partial Hausdorff distance is ro-
bust against partially occluded ob-
jects and outliers that may arise at
the contours due to noise or insuffi-
cient feature extraction.
The partial Hausdorff distance can examine object hypotheses in a complex
scene. This method was tested successfully with highway-traffic scenes. It was
able to recognize vehicles on highways and track them over time. Two degrees of

Fig. 3. Tracking of pedestrians based on
the cross entropy based on intensity dis-
tributions and LOC features

freedom were considered in our
schema: translation and scaling of
models.

Texture based Object Tracking
- Cross Entropy: One of the simple
description of textures is obtained
by intensity histograms (first or-
der statistics). Especially non-rigid
objects like pedestrians and two-
wheeled vehicles which consist of a
further rotational degree of freedom



compared to other road-users can be tracked using the cross entropy. As de-
scribed in [19] a matching process can be performed by comparison of two prob-
ability distributions. In our application a model distribution at time step (t − 1)
is compared to several hypotheses at time t. Figure 3 show tracking of pedes-
trians using intensity and edge probability distributions. As an extension to the
proposed method we use instead of statistics given by a histogram correlated
statistics given by the cooccurrence matrices. The quality of the estimate of
position and scale increases but the calculation time increases as well.

3.3 Neural Classifiers for Vehicles

For the task of classification different methods are used. Feature based and model
based solutions have been developed. The LOC-classifier is computational fast
method used for a fast estimate of given ROI. It is aimed at separating possible
objects from the background. It is independent from the resolution of the objects
due to a normalization in size. Additionally two classifiers with higher compu-
tational costs perform a reliable classification. The Hausdorff distance classifier
processes objects in the near field with high spatial resolution enhancing the
ROI image coordinates.

LOC-Classifier: With the given local orientation coding [8], described in sec-
tion 3.1), a classification of vehicles is realized. The classifier has to cope with
partial occlusions, varying illumination conditions, tilt of an object, differently
resolved structures depending on the distance of the object under consideration,
noise and perturbations induced by the recording and processing equipment,
different viewpoints and different kind of cars with different shapes and colors.
Additionally, the classifier should be able to generalize from relative few train-
ing examples to the necessary features characterizing a car. Therefore, a neural
network has been chosen for solving the classification task. It is a feed-forward
neural network with one hidden layer trained by the error back-propagation al-
gorithm [14]. These networks are known to be universal approximators for any
continuous valued function [15]. Furthermore, it is shown that these structures
can, with some small modifications, approximate a-posteriori probabilities in the
sense of a Bayesian classifier [6].
The inputs for the classifier are certain subsets of the histograms. The output is
the class of the region. The complete system has been implemented and exten-
sively tested on the Mercedes Benz VITA II test vehicle [2]. Different classes of
vehicles have been trained. For a further evaluation of the system see ref. [1].

Hausdorff Distance Classifier: Furthermore, the geometric property of the
Hausdorff distance leads to the idea of classifying various vehicles into separate
classes according to the imposed dissimilarity measure. Because of the need of
defining a reference contour for each class we deal here with a model based ap-
proach. The design of accurate models (prototypes) is of great importance for
our task. At a first step, the Hausdorff distance is used for the classification
of cars and trucks. Due to the fact that rear views of cars differ significantly



from rear views of trucks, one can expect that the design of generic models
for each class can accomplish the separation of the objects of both classes.

Fig. 4. Hausdorff distance classifier: each
region is compared with two models

The classification works according to
the following scheme: Each region is
compared with two models, i.e. a car
model and a truck model. The fea-
tures of the region and the models
have been extracted using the Lo-
cal Orientation Coding. For more ro-
bust results the horizontal features
are separated from the verticals, for
both the region and the models.
The Hausdorff distance is computed for each model over all the possible transla-
tions inside the region and a certain range of scales. The fractions of the features
of the forward and the backward match that verify a given distance thresh-
old constitute the criteria for its classification for each model. These values are
learned by a multi-layer perceptron (MLP) network using the back-propagation
algorithm.

4 The Concept of Fusion

Data fusion is one of the main goals to be achieved if a large amount of
stability and reliability is necessary like in this application of driver assis-
tance systems. On one hand a gain in robustness is reached by creating
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Fig. 5. Coupling model

by creating high redundancy so
that poor or missing results of
one data stream do not affect
the overall result decisively [9].
On the other hand the varying
types of objects and background
constellations demand a large
spectrum of data to be pro-
cessed to solve the given task.
Three different types of neu-
ral coupling mechanisms are in-
troduced [11]. The high flexi-
bility, the facility of expansion
and the adaptive retraining pro-
cesses have led to the choice of
neural networks.
The aim of fusion in computer
vision is to get an improvement
of special solutions and single
methods with a coupling net (parallel branch). Especially the modular coupling
of single processing steps generates redundancy necessary for object recognition.



Within this, greater flexibility and robustness of the image processing mod-
ules and high adaptation of the modules regarding to the problems should be
achieved. In figure 5 a principle of a fusion process for segmentation is shown [11].
Computer vision modules, generating lines (polygon approximation of the con-
tour) [5], local orientation coding [8], and local image entropy are coupled in
a neural network to solve the initial object detection. A feedback over time is
realized, additional sensor information could be easily integrated at this level.

5 The Concept of Integration

The overall system is shown is figure 6. The concept of integration (sequential
branch) of single steps to a reliable working system is mainly based on feedback
of results. As a sensor input the intensity image and radar signals are used. The
results of basic preprocessing algorithms are fed into a neural fusion architecture,
the initial object detection, that provides hypotheses of possible location of ve-
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Fig. 6. Overall system

hicles. The very fast calculating LOC-classifier reduces the set of hypothesis. An
internal stabilization over time ensures further robustness. In order to confirm
the hypothesis an object tracking is performed where the object size and type
decides whether the Hausdorff tracking or the cross entropy tracking have to be
used. The results scale, position, and confidence are fed into the main stream
and to the modular classifier. A neural network determines depending on the
results of the object size, the Hausdorff and cooccurrence classifier what type of
vehicle has been tracked.
Concerning the calculation rates the object tracking has to be performed for
every time step. The initial object detection can work on a slower time rate.
Finally the classification provides results on larger time steps due to the fact
that a tracked object with high confidence values will not change its class. So
the object tracking is the most important task next to the detection process. To
ensure a stable tracking over time a Kalman filter is implemented.



Fig. 7. Representation for
object tracking

The main recoupling stream gathers all the results
of the single tasks and is increasing over time. The
type of information is changing from an iconic (pre-
processing) to a symbolic (classification) descrip-
tion. A global data representation is built. Here
the integration of the different processing steps is
solved. Task depending pixel oriented maps of at-
tention are implemented. In figure 7 an example of
a representation for object tracking of vehicles in
front is shown.

6 Results and Discussion

We presented an overall system integrating the results and experiences of a long
period of research in computer vision. Due to the increase of computational
power and the development of reliable algorithms a fusion and integration of
basic methods each solving specific problems can be performed to realize an
overall stable system. The stability and robustness is largely increased. Because
the overall computational time is still quite long by using actual standard hard-
ware a spin off was realized. So if a real time operation system is the goal the
whole processing has to be restricted to some algorithms due to limited computa-
tional power and time. In this application the initial object detection is restricted
to a shadow analysis including a LOC-classification. The objects are tracked by
the Hausdorff tracker and classified by the Hausdorff classifier in order to use
just one preprocessed feature map. On a standard DEC Alpha (500 MHz) the
system uses 10 ms for the initial segmentation including a time stabilization,
then the LOC-classification needs 2 ms for every ROI, the tracking is performed
in about 2 ms per object (we restrict the number of objects to five so that 10 ms
for tracking is realistic) and finally the classification takes about 8-12 ms per
object. As mentioned before the classification has not to be calculated for every
frame. The organization of the global data representation needs 1 ms per frame.
This system is quite capable to obey the real time requirements but the pro-
cessing cannot cope with all different scenarios and we have restricted this ap-
plication to extra-urban roads and motorways. Nevertheless if the performance
of the hardware components will increase the presented overall system is able to
cope with most of the scenarios even in more complex situations.
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