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Abstract—In this paper, we describe an efficient method
for a fast people re-identification based on models of human
clothes. An initial model is estimated during people detection
and tracking, which will be refined during the re-identification.
This stepwise extraction, combination and comparing of features
speeds up the whole re-identification. For the refining, several
saliency maps are used to extract individual features. These
individual features are located separately for any human body
part. The body parts are located with an optimized GPU-based
HOG detector. Furthermore, we introduce a meanshift-based
fusion concept which utilizes multiple detectors in order to
increase the detection reliability.

Index Terms—hierarchical people re-identification, clothing
model, saliency maps based features, body part detection, nonlin-
ear SVM weights, cluster-based detection, security system, service
application

I. INTRODUCTION

The re-identification of people, in various sensor conditions,
is a everlasting topic in security applications [1] and will
become increasingly important in service applications to rec-
ognize interaction partners [2]. To allow a fast re-identification
we use a stepwise feature extraction and comparison, com-
bined with a GPU-based body part detection. A fast GPU-
based detector is used to enable multiple body part detections
at high-resolution images with 10fps. Further fast detection
and tracking methods are described in [3], [4], [5].

Several sensors could be used for re-identification, since
for a wide range re-identification, cameras are mainly used.
A common method is the face recognition [6]. The face
recognition allows a re-identification over a long time but
it is often not possible to use it with CCTV-Systems!, since
people don’t necessarily look into the cameras. Additionally
the resolution of a face image can be inadequately low for large
distance observations. To allow a people re-identification in
such situations, we focus on a model of human clothes for the
re-identification of people over a longer period of time (i.e. a
few hours). Hahnel [7] compares different methods to describe
color and texture of the clothing to model human clothes. A
kernel based method to compare simple features of human
clothes for re-identification is presented in [8]. Takeuchi shows
an improved PCA method for an automatic feature extraction
[9]. An online feature selection method for a ranking-based
re-identification is shown in [10]. In this work, low level
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features are selected by comparing several features of current
known people, while our method selects conspicuous features
separately for each person. Firstly, the full body of each person
is detected while the upper body and head areas are separately
detected with only one further detector. Secondly, general
features are extracted separately at fixed areas at the upper
body and the lower body to generate a first clothes model,
in contrast to [11] that divides the body shape in regions
with a similar appearance. Furthermore, this clothes models
are refined with individual features which are located with
the help of saliency maps. Other related works which handle
similar problems in illumination, pose changing and feature
extraction are described in [12], [13], [14].

Before the detection and re-identification process, a camera
related dynamic illumination correction which is described in
[1] is used.

In this paper, we will present a method for realtime body
part detection within high resolution videos. Afterwards, the
stepwise extraction of features of human clothes (section III)
as well as the stepwise comparison are described. In section
V the used testing environment and our results are presented.

II. BODY PART DETECTION

In order to reliably detect people within an image we
utilized an algorithm known as histogram of oriented gra-
dients (HOG [15]). The algorithms principle can be roughly
summarized as follows. It extracts pixelwise edge-gradients
from the input image and then assigns each gradient into one
of nine orientation bins for a small (e.g. 8x8 pixel) image
region. Then, the orientation bins from each image region are
sequentially concatenated into a feature vector. This vector
is used as the input for a support vector machine (SVM)
which is trained for people detection (we will refer to this as
a HOG iteration). Once all feature vectors have been binary
classified (i.e. once the SVM determined if they may represent
an object of interest). The resulting candidates are further
reduced through a meanshift algorithm. This algorithm can
be applied to a wide variety of objects (i.e. it is not limited to
body parts).

A. Nonlinear metric for SVM weights

In order to reduce the computation time and increase the
detection quality in the context of HOG applications, all result
windows are usually filters out with a SVM weight below
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a given threshold ¢;, firstly. This strategy can be applied to
accommodate the problem of too many items for the mean-
shift clustering. Yet, this simple method can also remove a
significant amount of correct detections. The reason for this
lies in the HOG algorithm. For large objects the corresponding
image area is scaled down to the detection window size. This
removes a large quantity of high-resolute image information.
Such windows will exhibit a smaller SVM weight compared
to smaller regions. Filtering according to ¢, which obviously
will be chosen according to the higher SVM values (and
thus the smaller windows), will remove many candidates for
large objects. Our approach addressed this problem under the
assumption that not all large windows have been filtered out.
We developed a simple strategy by rescaling the SVM weights
(after filtering with ¢1) according to

w'(wi) = fwi)wi (D
with e.g.
N Texp(—=B((In — (yi)2)/In))(yi)s  (yi)s = p
Flen) = 1 else
2

with I; being the image height, w; the SVM weight for
detection y; = (x,y,s) ( (y;)2 indicates the second vector
component). Each detection y; contains the detection window
center position (z,y) and the corresponding scale s. The
general effect of this transformation is that SVM weights
of large windows will be increased to rival with those of
smaller windows during the mode estimation. This approach
not only can retain large windows, it also remove infeasible
small windows in an area of large windows. The scaling
function f must be chosen to accommodate this goal. In the
example above, the scaling function f was chosen for upper-
body detections with a camera which covers an area with large
depth. Large objects usually appear in the lower part of the
image while small objects inhibit the upper portion. Thus SVM
weights of window candidates in the lower region should be
scaled up, while the scaling should vanish exponentially in the
upper image area. Furthermore, only the weights of windows
above a certain scale should be transformed, this prevents
small windows in the lower area to be transformed as well.
An example for this can be seen in Fig.1.

B. Cluster-based computation

In the previous section we described how one can increase
the reliability of the HOG while keeping the computational
costs down. Yet the HOG itself is computationally very
expensive. Processing a single frame (1600x1200px) on a
CPU can take up to 10 seconds. The computation time for
e.g. mean-shifting (30ms-100ms) is completely hidden by
that. In order to accommodate this fact we implemented the
HOG from scratch in a highly optimized way, reducing its
processing time to approximately 60ms for a single detector.
Our implementation is mostly system independent as it is
written in OpenCL, thus it can be executed on various GPUs
as well as CPUs without any change to the source code (the

Fig. 1. Weighting of near field windows The left image shows the use of
a single upper-body detector; the person in the lower part is not detected due
to small amounts of candidate windows. Using transformed SVM weights,
one can see on the right image that the same detector finds the person in the
lower part and suppresses the small false detection now.

stated times have been determined on a Radeon7970). Such a
boost can only be achieved by using modern GPUs and exploit
the inherent parallel nature of the HOG.

Running many parallel instances of the HOG algorithm
for the same image produces a certain amount of redundant
operations. Let us consider the case in which two different
objects are being detected within an image, let us further
assume that both detectors Dy and D, use the same HOG
parameters (i.e. detection window size, stride sizes etc.). In this
case the image preprocessing P is identical in both systems,
only the SVM classifiers C; and Cs are different. Thus we
further optimized our parallel HOG runs (i.e. (P|C}) etc.) on
the same host system by providing a software interface for
the described case. The classifiers C, Cy can then work on
the same extracted feature set. Our experiments have shown
that computation time, in case of two single detectors, can
be reduced by up to 37.5%. The detection with two separate
HOGs needs 120ms (60ms each), whereby 45ms are required
for preprocessing and 15ms for the SVM classification in each
single detector. Thus by saving one preprocessing step we save
(1—(45ms+15ms+15ms)/120ms)+100 = 37.5%. Currently
only the mean-shifting is done on the CPU, thus the largest
algorithmic part is being executed on the GPU. During the
GPU computation the CPU is completely available for other
tasks, thus the CPU can be used for illumination correction
before the HOG run as well as extracting first individual
features of human clothes.

Initially, we focus to a system structure used to detect
all body parts in realtime at high-resolute images (10fps at
1600x1200px) by using only one computer per camera (Fig. 2
left). This approach becomes unfeasible in realistic scenarios
by using multiple detectors, as we approach the physical
limits of mainstream computers. Thus we developed a software
framework to distribute the HOG in a cluster-like manor
among small computation nodes, each equipped with one or
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Fig. 2. Detector system The left image shows the use of multiple detectors, each executing m iterations (P|C;). The right image depicts an enchanced
version with following differences: a) the workload is distributed via a management node among the detectors b) the detector preprocesses the image only

once and uses multiple SVMs

two GPUs. The right side of Fig. 2 visualizes this approach.
The systems structure follows the concept of a Beowulf cluster.
The systems structure is highly dynamic, new nodes can be
added to increase the overall computation power and existing
nodes can be removed if the cluster is not fully utilized. Each
computation node runs a minimalistic Linux system. During
our evaluation, ArchLinux was used although our system can
be used on any Linux distribution.

III. FEATURE EXTRACTION

To speedup the recognition, two types of features are
stepwise used. The first kind are the general features of
human clothes, which are calculated for each person during the
detection. These features are used to accelerate the search. In
this way, the more complex saliency maps based features are
only calculated for the searched person and a few hypotheses.

A. General Feature

The used general features are basically described in [2]
for a human robot dialog system. Hommel categorizes ap-
pearance based features into color and texture features. The
texture is naturally independent of the illumination. Whereas
the RGB-color representation is transformed into the HSV-
representation to use only the illumination independent hue
and saturation of the color. The used features are extracted
separately at the upper body and lower body (Fig. 3). One
rectangle part of the lower body is separated to determine
the mean hue and saturation. Furthermore, the mean hue and
saturation are calculated at a rectangle part of the upper body,
too. At the rectangular upper body part, the mean horizontal
and vertical texture rates are calculated with the help of the
Scharr filter [16]. The mean horizontal and the mean vertical
texture rates describe the strength of the texture at the selected
area. One histogram of the hue values and one histogram of
the saturation values are calculated at an oval area of the upper
body.

Fig. 3. Feature extraction The used features for the full
body people recognition will be extracted from three areas.
This areas are located relative to the whole-body detection.

The mean hue and saturation describes the basic color of the
users lower and upper body, while the histograms describes
the upper body in detail. By using the hue and saturation
histograms, even prints, patches etc. are represented in a very
compact manner. To handle minor changes, the hue and the
saturation values are divided into 16 parts for the normalized,
scale independent histograms. All similar features will be
tracked over time, by using the well-known kalman filter, in
order to obtain a more robust and faster recognition.

B. Saliency Maps based Features

Additional to the general features we utilize saliency maps
in order to describe individual features of the human clothing.
To find these features, saliency maps are calculated for each
body part. To locate comparable features, it is necessary
to warp the body parts to standardized forms. For a faster
extraction each body part is warped to a rectangle with a height
of 100px. Afterwards, the features will be extracted separately
for each body part by a combination of the saliency maps of
Itti and Koch [17] with the local entropy at regions of interest
[18] (Fig. 4).

This method is described detailed in [1] only for the upper
body in combination of RGB- and SWIR-images. In this work
four saliency maps are calculated for each body part (upper
body, lower body, arms, legs).
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Fig. 4. Saliency maps Combination of the saliency maps of Itti and Koch
(left) with the local entropy at region of interest (right).

IV. FEATURE COMPARISON

To compare the presented clothing features in an efficient
manner, firstly the general features between the track of
the searched person and each track in the search area are
compared. Therefore, the features of each detection of two
tracks are compared (Fig. 5). All general features are extracted
for each detection during the tracking and detection, to speed
up this expensive operation.

search space
Track 1 ¢

Track 3
Track 4 -©o0¢

Fig. 5. Comparing General Features Each detection of the searched person
is compared with each detection of the search area. To display the connections
clearly, not each detection is connected in this figure.

During the calculation of the difference D between the hues
of the searched person feature space (H;) and the hue of
the current hypotheses (H.), one must heed that the hue is
represented as a circle. In this way, the collection of the errors
for each feature is used as a score for each detection. Hence, a
small score means a high similarity. The resulted score range
between 0 and 1.

For the second step, only the best matching detections
between each track of the search area and the searched person
is used, once the error is smaller than a threshold (0.06) (see
Fig. 6). In this way, the saliency maps based features are only
calculated for few detections. To speedup a second search
of the same search person or in the same search area, all
calculated saliency maps based features are saved, too.

As we wrote before, all the saliency maps based features of
each body part of one detection is stored in the matrix M. To
recognize a person, the normalized error of the location (nor-
malized euclidean distance) and the related value (normalized
absolute difference between the values) of each feature of the
matrix M is summarized to a further normalized error. So the
saliency maps based error ranged between 0 and 1.

In the next step, the error of the general features and the
saliency based features are combined to calculate the final
error between two tracks. Firstly, the general feature based

search space
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Fig. 6. Comparing Saliency Maps based Features The saliency maps based
features are only calculated for detections were the error of the first step is
smaller than a threshold.

error is divided by the threshold (0.06). So, this error rang for
the relevant detections between 0 and 1. Secondly, the saliency
maps based error is divided by 2 and the general feature based
error is added. At last, the resulted error is divided by 1.5 in
order that the resulted error also ranges between 0 and 1.

V. EXPERIMENTS

We tests our system architecture at an airfield (airport
Schonhagen) with private hangars and civil people near the
airstrips and at a terminal of a typical general aviation airport
(airport Erfurt-Weimar). At the airfield, the CCTV-Cameras
are mounted inside and outside, so the re-identification must
be able to handle strongly varying illuminations, once the
illumination is mostly homogenous inside of one observation
area. The illumination at the airport is widely equal between
different cameras, since all cameras are mounted in the same
arrival hall. The challenge at the airport is the crowding
environment. Furthermore, one wall of the hall consists only
of windows and glass doors, so there are very dark and bright
areas with hard bounds (Fig. 10). At the airfield Schénhagen
four cameras are used, two inside a hall (C7 and C6) and two
outside (C5 and C4) (Fig. 7).

Fig. 7. Camera position airfield This figure shows the camera positions at
the airfield Schonhagen.

Five cameras are mounted at the airport Erfurt-Weimar
(Fig. 8). The cameras C1, C2 and CS5 observes the ground floor
and the cameras C3 and C4 observes the second floor. At the
airfield, three groups of volunteers are recorded. Two groups
wear colored casual clothes and one group wear only dark
clothes. The figure Fig. 9 shows one image of each camera at
the airfield with these three groups.

All the groups walked in several conditions from camera C7
to camera C4 and back. Firstly, the groups walked naturally
with small groups inside each of the three groups. Secondly,
all groups walked this path loose and afterwards closed. This
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Fig. 8. Camera position airport This figure shows the camera positions at
the airport Erfurt-Weimar.

Fig. 9. Camera views at the airfield

will be repeated by splitting each group between camera C6
and CS5 outside the observation area. This splitted groups are
later merged in the observation area of camera C4.

At the airport Erfurt-Weimar mixed groups are recorded.
People with dark business like clothes and people with casual
clothes forms up several small, loose groups (Fig. 10). For
this scenario the volunteers walked like normal passengers and
visitors.

The aim of our method is to ease the people search for
human security personal. For that reason, our aim is to rank
the searched person over all sequences better than rank 10,
which was successfully for 94% of all the fully detected people
(Fig 11), by using general and saliency maps based features.

Fig. 12 shows an exemplary result of our re-identification at
the airport Schoenhagen and the false acceptance rate (FAR)
to each error value for all test sequences at this airport.

A sequence of 10 persons with a length of 4 minutes (2400
frames) can be analyzed in ca. 10 seconds by using a parallel
search to use all 4 cores of a Core i7 2,67GHz processor.

VI. CONCLUSION

In this paper, we presented a method to extract and compare
individual clothing features with respect to detected body
parts. Two types of features are stepwise extracted. Firstly,
general color and texture based features are extracted paral-
lel to the detection process. Secondly, saliency maps based
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Fig. 10. Camera views at the airport The upper left image shows an
exemplary image without our illumination correction.
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Fig. 11. Rank 10 statistic This figure shows the rank 10 statistic of our
approach by using the general and the saliency maps based features (red,
solid line) as well as without the saliency maps based features (blue, broken
line).

features are extracted only for relevant person detections. The
problem of loosing weak correct detection through this process
was compensated by a nonlinear transformation of the SVM
weights. We showed that a fast and robust re-identification can
be realized by tracking body part based clothing features with
respect to their similarity in combination with saliency based
features (ca. 10 seconds for 24000 person detections; 94% of
the recorded people were recognized at range 10 or better). In
further work we want to calculate a score for the detections, so
the general features will be calculated and compared only for
detections with a high certainty. We will evaluate further fast
additional methods to locate individual features. Additionally,
we will try to stabilize the multi camera re-identification by
using additional objects like the camera related tracking in
[19]. Furthermore, we want to test our method more systematic
with public databases.
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Fig. 12. Re-identification Schonhagen The left upper image shows the
marked search person at camera C7 at the airport Schonhagen, which is
recognized at the camera C4 (upper right), with an error of 0.545358. The
lower figure shows that a clear mapping is possible up to an error of 0.6.
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