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Abstract Practical application of object detection systems, in research
or industry, favors highly optimized black box solutions. We show how
such a highly optimized system can be further augmented in terms of
its reliability with only a minimal increase of computation times, i.e.
preserving realtime boundaries. Our solution leaves the initial (HOG-
based) detector unchanged and introduces novel concepts of non-linear
metrics and fusion of ROIs. In this context we also introduce a novel
way of combining feature vectors for mean-shift grouping. We evaluate
our approach on a standarized image database with a HOG detector,
which is representative for practical applications. Our results show that
the amount of false-positive detections can be reduced by a factor of 4
with a negligable complexity increase. Although introduced and applied
to a HOG-based system, our approach can easily be adapted for different
detectors.
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1 Introduction and previous work

Histograms of oriented gradients[4] are a fundamental building block for many
object detection systems. Even with the advent of deep-learning, several of to-
day’s state-of-the-art systems, e.g. [9] or [6]. [5]) still continue to use HOGs as
supplementary information in order to boost their performance. In other cases,
the benefits of HOGs, e.g. less required training data, outweigh those of other
systems such as a slightly better recognition rate with much more training data.
One can see these effects in the comparison of MultiFtr+CSS and HOG in [2].
Yet, the practical application of object detection systems, in research or indus-
try, favors highly optimized black box solutions. Complex systems require an
intrinsic understanding of their parameters in order to boost their performance,
due to time constraints it is often unfeasible to study and retrofit an existing
system. For industrial applications it is a costly task to train an SVM classifier
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and optimize the involved parameters, a similar thought regarding time holds
for research applications in which the detector results are merely used as supple-
mentary feature elements. In this paper we show how such a highly optimized
system can be further augmented in terms of its reliability with only a minimal
increase of computation times, i.e. increasing the detection quality while pre-
serving realtime boundaries. Our solution leaves the initial detector unchanged.
Although introduced and applied to a HOG-based system, our approach can
easily be applied for other detectors as well.
Section 2 briefly explains the challenge of grouping and selecting detections
within the HOG algorithm. Furthermore it introduces the key elements of our
approach; metric scaling of SVM weights and ROI fusion. Section 3 introduces a
processing pipeline which applies the mentioned elements in order to boost the
detectors performance. We conclude this paper with sections 4, 5 and 6 which
describe our setup, present our results on a standard image database and give
an outlook for additional research, respectively.

2 Boosting Results Through ROI Fusion and Non-Linear
Metrics

Let us assume an already trained HOG detector, i.e. all HOG parameters and the
involved SVM training have been optimized for some training/verification set of
images. Even in case of a huge training set, the pure HOG detection will yield a
large amount of false-positive detections. This is often addressed by discarding
all detections yi whose SVM score ωi lies below a certain theshold t. This can
reduce the e.g. ≈10000 positively classified patches down to ≈50, which usually
removes many false positives yet keeps many adjacent scales and positions for
correct classifications. In order to reduce these detection groups down to an
(ideally) single representant one applies clustering methods such as the mean
shift approach. Yet as the mean-shift algorithm incorporates the SVM scores,
it is also possible to loose true-positives (in case of true positives with small
SVM scores). Finetuning the threshold t yields only marginal improvements and
results in an increased amount of detections, which in turn can significantly slow
down clustering algorithms.

2.1 ROI Fusion

The following approach is motivated by the results of [4], who utilized a weighted
variant of mean-shift clustering for the grouping of multiple detections in (x, y, s)
space. Let D1, D2 be existing HOG detectors which are trained to find distinct
parts of an object, e.g. an upper-body and a head detector respectively. Just as
with classical mean shift algorithms, e.g. [3], in which one iteratively estimates
the modes ym (of n points yi) of a distribution by

ym = Hh(ym)

n
∑

i=1

ωi(ym)Hi
−1yi (1)
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with

ωi(ym) =
|Hi|

−1/2 exp(−D2[ym, yi, Hi]/2)
∑n

j=1
|Hj |−1/2 exp(−D2[ym, yj, Hj ]/2)

(2)

Let yi = (x, y, s) ∈ R
3 be the elements of the sampled data (i.e. the windows

obtained by a complete multiscale HOG run, x, y, s denoting the position of
the window center and scale respectively), Hi = diag(σx, σy, σs) the diagonal
uncertainty matrix and

D2[ym, yj, Hj ] := (ym − yi)
T Hi

−1(ym − yi) (3)

= σx((ym)1 − (yi)1)2 + σy((ym)2 − (yi)2)2 + (4)

σs((ym)3 − (yi)3)2 (5)

the Mahalanabois distance between ym and yi ( (y)i indicates the i-th vector
element ). We propose the following weighted extension, let y1, y2 denote the
resulting windows from D1, D2 respectively and ω1, ω2 the corresponding SVM
scores / weights. First one has to create feasible 5-dimensional features

ỹk := ((y1

i )1, (y1

i )2, (y2

j )1, (y2

j )2, (y1

i )3), ω̃k := ω1

i ω2

j (6)

by grouping all feasible D2 windows y2

j for a single D1 window y1

i . The selection
criteria for this combination, which must be fulfilled, are as follows

1. α1(y1

i )3 ≤ (y2

j )3 ≤ α2(y1

i )3, α1, α2 ∈ (0, 1], α1 < α2

2. Let w, h denote the width and height of y1:
β1w ≤ (y2

j )1 − (y1

i )1 ≤ β2w, β1 < β2, β1, β2 ∈ (0, 1]

3. β3h ≤ (y2

j )2 − (y1

i )2 ≤ β4h, β3 < β4, β3, β4 ∈ (0, 1]

Figure 1. The fusion of detections, each detection
y1

i of detector D1 is combined with all detections y2

j

from detector D2 if its left upper corner lies in the
dashed rectangle. The same applies for the scale.

These rules represent position restrictions which combine windows y2

j only if

they lie in a certain boundary relative to y1

i (see Fig. 1). A practical example
would be to consider only head windows which lie completely within the upper-
body window. This grouping lifts the upper-body windows into a 5-dimensional
space and adds the position variance of each fitting head window y2

i to it. The
scale remains unchanged since a scale equivalent is defined with criteria 1. The
mean-shift clustering was changed to a weighted variant

ωi(ym) =
|Hi|

−1/2ω̃i exp(−D2[ym, yi, Hi]/2)
∑n

j=1
|Hj |−1/2ω̃j exp(−D2[ym, yj , Hj ]/2)

(7)

with Hi = diag(σ1

x, σ1

y, σ2

x, σ2

y, σs). The uncertainty values σ2

x, σ2

y should be set to
a smaller value than σ1

x, σ1
y, since might be reasonable to put more certainty into
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D2 so that it might stabilize the detection windows for the upper body. Since
the amount of D1 detections is increased we refer to this combination approach
as sample spreading. The evaluation in section 5 shows that this strategy can
yield a significant improvement in detection quality compared to D1 alone. It
should be pointed out that k can (in theory) reach values up to |{y1

i }| · |{y2

j }|,
which can even slow down an efficient implementation.

2.2 A Nonlinear Metric for SVM weights

In order to reduce the computation time and increase the detection quality in
the context of HOG applications, one usually first filters out all result windows
with a SVM weight below a given threshold t1. This strategy can be applied
to accommodate the problem of too many items for the mean shift clustering.
Yet this simple method can also remove a large amount of correct detections.
The reason for this lies in the HOG algorithm, for large objects it will scale
the corresponding image area down to the detection window size, this removes
a large quantity of high-res image information. Such windows will exhibit a
smaller SVM weight compared to smaller regions. Filtering according to t1, which
obviously will be chosen according to the higher SVM values (and thus the
smaller windows), will remove many if not all candidates for large objects. Our
approach addresses this problem under the assumption that not all large windows
have been filtered out. We developed a simple strategy by rescaling the SVM
weights (after filtering with t1) according to

ω′(ωi) := f(ωi)ωi (8)

with for example

f(ωi) :=

{

τ(−θ((Ih − (yi)2)/Ih))(yi)3 (yi)3 ≥ ρ

1 else
(9)

with Ih being the image height and θ a constant. The general effect of this
transformation should be that SVM weights of large windows will be increased
to rival with those of smaller windows during the mode estimation. Not only can
this approach retain large windows but also remove infeasible small windows in
an area of large windows. The scaling function f must be chosen to accommodate
this goal. In the example above the scaling function f exhibits a linear behaviour,
yet one might also use an nonlinear tesselated transformation for more complex
scenes. Large objects usually appear in the lower part of the image while small
objects inhibit the upper portion. Thus SVM weights of window candidates in
the lower region should be scaled up, while the scaling vanishes linear in the
upper image area. Furthermore only the weights of windows above a certain
scale will be transformed, this prevents small windows in the lower area to be
transformed as well. An example for this can be seen in Fig.2.

3 A Detection-Pipeline for Boosting the Detection
Quality

In order to further motivate the techniques from section 2 we conducted a thor-
ough evaluation by embedding them in a detection pipeline. This section shows
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Figure 2. Weighting of near field windows: The
left image shows the use of a single upper-body de-
tector; the person in the lower part is not detected
due to small amounts of candidate windows. Using
transformed SVM weights one can see on the right
image that the same detector now finds the person
in the lower part and suppresses the small false de-
tection.

that an efficient implementation of the previously described algorithms and ideas
can boost HOG-based systems in terms of their detection quality while still main-
taining previous time constraints.
The detection pipeline is depicted in Fig. 3. The first step may consist of any
form of image preprocessing, the output is directed into the HOG detector, which
performs the initial detection (of at least one feature) without any form of detec-
tion grouping. All detections are forwarded into a metric-based selector, which
consists of two steps; a thresholded reduction of detections and a metric scal-
ing of SVM weights. After this point the results are forwarded into two parallel
grouping branches, each consisting of two steps; detection grouping and a sanity
check, which may use any available scene information in order to remove detec-
tions with impossible positions. The calculated detections from both branches
are finally fused with a mean-shift grouping, these detections are forwarded into
a so called streaking block. The streaking block is utilized in video streams and
applies a simple heuristic (which is described in Alg. 1) in order to predict de-
tections and eliminate short term detection gaps. The algorithm leaves out the
details of how to find corresponding detections, i.e. it does not specify the form
of feature vectors. In the following evaluation normalized intensity histograms
have been used, additionally the distance between detections has been checked.
More precisely

– The feature vector fi consists of n · 256 real numbers, 256 for each color
channel.

– Feature vectors are compared by calculating the euclidean distance, which
can not exceed a threshold tf

– The distance between the upper left corner for two detections can not exceed
a pixels along the x-axis and b pixels along the vertical.

Although simple in its design, this approach yields significant improvements
compared to the canonical HOG algorithm. Yet, depending on the situation, e.g.
image quality, a color histogram might become unfeasible since it is susceptible
to image noise effects. This histogram based metric can be exchanged for more
complex descriptors and similarity measures, e.g. a gradient based descriptor
with a weight based metric, thus one can adapt the described pipeline for such
a scenario. The streaking results will be grouped by a last mean-shift step after
having been filtered by a final sanity check.
Note that the classic HOG algorithm can be obtained by setting less restric-
tive parameters for the metric selection, defining the sanity check of the fusion
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branch to filter all results, setting the streaking history size s = 1, adapting the
parameters of the last two grouping steps and the last sanity check.

Algorithm 1 Streaking

Require: Image I , detections D, history size s, detection history H =
{(d1, f1, x1, c1), ..., (dk, fk, xk, ck)} with shift buffer xi of size s, feature vector fi,
match counter ci and mismatch threshold t
b = 0;
for each d ∈ D do

for each ei ∈ H do
compare the feature vector ei and that of d (include additional sanity checks)
if If the vectors match then

Add position x of d to xi;
Update histogram of fi with data at the position of d;
Set ci = 0;
b = 1;
break;

else
Set ci = ci + 1;

end if
if If ci ≥ t then

remove ei from H;
end if

end for
if b == 0 then

Add new entry for d to H;
end if
b = 0;

end for

Preprocessing

Detection
Metric 

Selection

Fusion

Grouping

Sanity Check

Grouping

Streaking

Sanity Check

Grouping

Sanity Check

Grouping

Figure 3. A detection pipeline with ROI fusion and met-
ric scaling of SVM weights. The image I will be prepro-
cessed before being forwarded into the HOG-based detec-
tor without grouping. The third block removes all detec-
tions below a certain threshold and rescales the weights
according to a scene specific metric. The initial and re-
maining detections are sent into two parallel grouping
branches; a fusion grouping and a canonical grouping,
respectively. The grouped results of both branches will
be merged afterwards. In case of video streams from a
static scene the streaking block can be utilized for reduc-
tion of detection gaps. All sanity checks are scene specific
heuristics which remove detections at unfeasible places.
The pipelines output consists of a grouped detection set
D.

4 Evaluation

The motivation behind the design of the pipeline was to demonstrate the ap-
plicability of the developed algorithmic concepts. Since the work in this thesis
mainly targets the improvement of efficiency while preserving scalability we will
show the works potential by improving the detection rate of an existing HOG
implementation while preserving the previous time constraints.
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Two HOG detector were trained on the INRIA training set, one for the detec-
tion of entire human bodies (HB) and one for detecting upper bodies (HUB), the
training was done according to the original protocol by [4]. Each corresponding
SVM was obtained by a decadic grid search over C ∈ [10−5, 103] with a 10-fold
cross-validation at every step. Since the INRIA database only provides labels
for complete bodies, all upper body labels were extracted by using the upper
third of each rectangular label ROI. Both HOG detectors have been utilized in
the pipeline’s detection block. Table 1 states the HOG parameters in more detail.
The pipeline was evaluated on the CAVIAR [1] database since it provides targets
for all blocks in the pipeline;

1. The metric scaling of SVM weights becomes applicable due to strong size
differences between objects in near and far field.

2. The ROI fusion is trivially applicable.

3. The streaking is applicable since the images are extracted from a continuous
video stream.

Futhermore, this database represents a typical field for many parallel video
streams; surveillance. In order to get comparable results between the classic stan-
dalone HOG detectors and the pipeline results, the mean-shift grouping parame-
ters were kept identical for all grouping steps, σx = 16, σy = 8, σs = 1.05, ǫ = 1.0.
The fusion grouping was done with α1 = α2 = 0.05, β1 = β2 = 0.1, β3 = β4 = 0.1
and σ1

x = σ2
x = σx, σ1

y = σ2
y = σy. The iteration count was limited to a maximum

of 100.
A detection d is considered to be a true positive if it can be associated with a
ground truth date dgt such that

|d ∩ dgt|

|d ∪ dgt|
≥ 0.7 (10)

The parameters for the metric scaling were set to τ = β = 1.0 and ρBody =
−0.2, ρUpperBody = −0.1, this represents an entirely linear scaling over the com-
plete image. One should note that ρ represents an individual thresholding for
each detector. All sanity checks consist of checking if a detection lies in an un-
feasible region, which are defined through a polygon set P = {p1, ..., pn}.
Since all images within the CAVIAR dataset have been recorded with a rather
low resolution of 640x480 the preprocessing consists of a GPU accelerated up-
scaling to 1600x1200. This step is reasonable in the sense of applicability, the
already trained detector should not need to be retrained for each different image
format. Furthermore one would need to shrink the training images even more
for smaller window sizes, this would introduce further information loss and a
reduction in detection quality.
Two image sets of a specific scene were chosen, WalkByShop1Cor and Three-

PastShop1Cor, the scene and the corresponding set P is visualized in Fig. 4.
Besides the parameters for the metric weight scaling and the defined polygons
no additional scene specific optimizations have been utilized.
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Figure 4. A scene from the CAVIAR image
database, the surveillance camera’s position induces
a significant size difference between objects in near
and far field. Three polygons (P1, P2, P3) have been
defined and enclose image regions which should not
contain pedestrians.

Table 1. Parameters for both detectors, i.e. body and upper body HOG detectors

Set Cell size Block size Window size Block stride Window stride Bin count Scale σ

HB 8 × 8 16 × 16 64 × 128 (8, 8) (8, 8) 9 1.05 1.0
HB 8 × 8 16 × 16 96 × 88 (8, 8) (8, 8) 9 1.05 1.0

5 Results

The plots in Fig. 5 illustrate the differences between the classic HOG algo-
rithm and elements of the pipeline. Let T Pi = (x0, x1, ..., xk, ...) be the sequence
of image-wise true positive counts obtained with algorithm i for each image,
analogously let FPi be the sequence of false positives. Both plots in the first
row of Fig. 5 depict the difference δT P

HOG,Metric := T PMetric − T PHOG and

δF P
HOG,Metric := FPMetric − FPHOG, respectively. If δT P

HOG,Metric(k) > 0 for
some image index k then more true positives were obtained by using the HOG
algorithm than with metric scaling of the weights. The same holds for the false
positive count. It becomes obvious that less true positives were obtained with
metric scaling, yet one has to accept significantly more false positives. This indi-
cates a stabilizing effect onto the canonical HOG approach, which is also visible
in the second row of plots, i.e. the results of comparing the HOG against the
pipeline’s fusion branch. The last row in Fig. 5 depicts the comparison between
the HOG and the entire pipeline. The amount of false positives is significantly
reduced while keeping the amount of false positives close to that of the classic
HOG algorithm. One obtains a mean value of 4.3643 less false positives per im-
age and 1.02 less true negatives per image.
These results illustrate the potential of the constructed pipeline, by using the
detections of an existing HOG detector one obtain significantly less false posi-
tives while preserving the amount of true positives. As Fig. 6 shows, it turned
out that a significant amount of fused detections was constructed within the
fusion branch. This in turn posed a bottleneck for the pipeline’s applicability,
since grouping times would reach values up ≈ 200s (right plots in Fig. 6). Yet, by
using the concept for massively parallelized mean shift computation [7] this time
could be reduced to a maximum of ≈ 10ms, which in turn led to the pipelines
complete processing times as depicted in Fig. 7. The pipelines maximal detection
time was ≈ 88ms, which still enables one to process ≈ 11 frames per second. An
additional speed-up could be achieved by using the tile image approach from [8]
since the actual SVM-based detection process makes up about 1/3 of the total
processing time (see the red line in Fig 7).
One has to note that the detection quality is determined to a large extend by
the initial HOG detector. An improvement of the underlying detections would
further boost the pipelines results, such an improvement may include scene spe-
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cific SVM training or boosting approaches from machine learning. Very similar
results were obtained on the ThreePastShop1Cor image set.

100 200 300 400 500 600 700 800 900 1000 1100

Image

-5

-4

-3

-2

-1

0

1

#
T

ru
e

 P
o

s
it
iv

e
s
 D

if
fe

re
n

c
e

100 200 300 400 500 600 700 800 900 1000 1100

Image

-12

-10

-8

-6

-4

-2

0

#
F

a
ls

e
 P

o
s
it
iv

e
s
 D

if
fe

re
n

c
e

(a) HOG vs metric true positive count (b) HOG vs metric false positive count
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Figure 5. Comparison of recall statistics for the canonical HOG body detector and
pipeline segments on the ThreePastShop1Cor image set. Image a) shows the difference:
#true positives fusion branch - #true positives classic HOG, image b) the correspond-
ing false positive difference.
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Figure 6. Statistics for the multidi-
mensional mean-shift grouping on
the ThreePastShop1Cor image set.
The graph depicts the amount of
computed detection combinations
for the multidimensional mean-shift
grouping.

6 Conclusion

A very common application for object detection is that of video surveillance, in
which a system must process many parallel video streams. Section 3 shows how
an existing HOG based system can be augmented for this application; using
the described pipeline it becomes possible to increase the systems reliability,
the induced complexity increase is negligable and can easily be compensated by
techniques from [8] and [7]. The pipeline incorporates two developed concepts;
metric scaling of SVM weights and ROI fusion, both being introduced in section
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ues are invariant to the amount of
detections since the grouping has
been left out.

2.2 and 2.1, respectively. The results indicate a stabilizing effect onto the initial
HOG detector, i.e. the amount of false positive detections can be reduced while
retaining the amount of true positives. As shown in section 5 one can expect,
considering an adequate choice of parameters, a reduction of false positives by
a factor of ≈ 4 while reducing the amount of true positives only marginally
with a factor of ≈ 0.2. Increasing the detectors initial reliability will most likely
eliminate the reduction of false positives, yet this remains a question for future
research. The developed concepts can be applied to any object detector, yet the
resulting gain in detection quality might be different, e.g. it may have the same
stabilizing effect or even provide an increase of true positives. Furthermore it
should be studied how the boosting parameters can be infered from the camera
perspective itself, this may provide a simple applicable “black box” boost solution
for existing detectors, no redesign or retraining is required.
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