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Abstract—In this contribution we present a novel approach
to transform data from time-of-flight (ToF) sensors to be in-
terpretable by Convolutional Neural Networks (CNNs). As ToF
data tends to be overly noisy depending on various factors such
as illumination, reflection coefficient and distance, the need for
a robust algorithmic approach becomes evident. By spanning a
three-dimensional grid of fixed size around each point cloud we
are able to transform three-dimensional input to become process-
able by CNNs. This simple and effective neighborhood-preserving
methodology demonstrates that CNNs are indeed able to extract
the relevant information and learn a set of filters, enabling them
to differentiate a complex set of ten different gestures obtained
from 20 different individuals and containing 600.000 samples
overall. Our 20-fold cross-validation shows the generalization
performance of the network, achieving an accuracy of up to
98.5% on validation sets comprising 20.000 data samples. The
real-time applicability of our system is demonstrated via an
interactive validation on an infotainment system running with
up to 40fps on an iPad in the vehicle interior.

I. INTRODUCTION

Free-hand gestures are an established means of control for
various kinds of systems with a broad range of applications,
however they are rarely used as a solitary interaction tech-
nique due to various limitations. There are different ways
of approaching this task which can be distinguished between
the immersive (using devices attached to your body) or non-
immersive (using devices for observing the scene) approaches.
Depending on the scenario, the most efficient way of providing
this possibility has to be chosen while it remains clear that in
an automotive environment the desirable way is to keep the
degrees of freedom of the driver at a maximum. When also
taking into account the challenging lighting conditions (day-
night shift, direct sunlight) the means of observing the scene
has to be carefully selected. We present a novel method for rec-
ognizing a challenging set of ten different hand gestures from
time-of-flight (ToF) data recorded with the Creative Gesture
Camera. Based on a large-scale hand gesture set recorded from
20 different individuals we train and optimize a Convolutional
Neural Network to be able to distinguish the different gestures.
CNNs are optimized to work on 2D data of fixed size while the
resulting point clouds stemming from a ToF camera are voxel
data of variable size - hence we propose a novel approach
of transforming the data in order to become interpretable by
CNNs. We evaluate the performance of our system via a

series of leave-one-out cross-validation tests demonstrating its
generalization capability on unknown persons. Lastly, we show
the applicability of the system by setting up a demonstrator
utilizing the object recognition of our system on a mobile
tablet with an infotainment application specifically tailored to
the task. The rest of this contribution is laid out as follows: The
following section presents the most important related work to
the topic. Section III shows the core of the data transformation
step and the resulting network architecture. The backbone of
our system is a large-scale database which is presented and
explained in Section IV. To validate the presented approach
we conducted a series of experiments which are described
in Section V. We discuss a possible system setup with an
infotainment application specifically developed to demonstrate
its applicability in Section VI. Finally we conclude with a
discussion of the most significant insights and give an outlook
on future work in Section VII.

II. RELATED WORK

The is an abundant amount of work related to the topic
of Hand Gesture Recognition (HGR) [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11]. Within the field of Advanced
Driver Assistance Systems some of the main challenges remain
the illumination interferences, real-time capability, scaling,
rotation and translation as well as HMI-related issues (gesture
set, interaction area etc.). Deep Learning has been successfully
applied to solve a plethora of Computer Vision problems,
within the area of 3D Vision and more specifically HGR the
amount of related work is yet scarce. Glatt [12] has shown
how Deep Learning can be successfully applied to achieve
HGR from Kinect data with the help of Deep Belief Networks.
The best recognition results oscillate between 75% to 85% and
are partially comparable scores achieved in this contribution
although similar accuracy scores as high as >98% are never
reached. Barros et al. [13] show how CNNs can effectively
be applied to recognize Italian sign gestures from Kinect data
achieving error scores of 8.3% for the best model with their
system also working in real-time. Tang et al. [14] show how
Deep Neural Networks can be utilized to discriminate between
20 different hand poses using a Kinect sensor achieving high
accuracy ratings. Although the authors claim that illumination
invariance is achieved while making use of both depth and
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Fig. 1. The hand gesture database consisting of ten different gestures: ONE,
TWO, THREE, FOUR, FIVE, FIST, FLAT, GRAB, PINCH, POINT

color data, how exactly this goal is reached remains unclear
as both RGB and depth measurements stemming from a
Kinect sensor are unreliable when exposed to direct sunlight.
Given these circumstances, the approach presented in this
contribution supposes relying on a single depth sensor to
achieve illumination invariance and real-time capability as
modern ToF cameras are able to record data with up to
90fps. The novelty in this approach lies in the light-weight
data transformation step which not only allows for CNNs
to be utilized but moreover maintains real-time performance.
This combination of low-cost hardware and rapid algorithmic
processing yields high recognition results and is, to the best
of our knowledge, a novel contribution to the field of HGR
for infotainment control with CNNs.

III. DATA PREPARATION AND NETWORK STRUCTURE

In order to be able to deal with three-dimensional input,
this contribution presents an approach which transforms the
raw 3D data into a format readable by CNNs. The need for
a fixed-size input requires a specific partitioning of the 3D
input. Given an input of 3D data points (voxels) of arbitrary
extension across all possible dimensions (also referred to as
point cloud), we propose the subdivision of the entire cloud
into cubes of fixed size. To this end, the maximal extension of
the data points has to be calculated for the entire problem. The
underlying approach utilizes the 3D-subdivision of the point
cloud with the subsequent summation of the points within each
resulting cube.

Raw data coming from depth sensors describes the environ-
ment in a 2.5 dimensional way. As opposed to e.g. 3D models
of objects created by hand, a sensor has limited view onto
a scene namely in that the vision is bound by the sensor’s
perspective, subsequently a lot of information is irretrievable
because it is hidden from the observer. This presents an
obstacle to our approach as we try to create input data readable
for CNNs from a reduced set of data points. To this end,
in order to be able to work on 3D input data we employ

a modified LeNet 5 implementation of the Theano library
[15] [16] with two convolutional layers. The input space is
subdivided into n3 hypercubes of fixed size. Each hypercube
then contains a subset of data points from the original object.
Depending on the density of the cloud, a certain number
of cubes remains empty. In order to avoid too many empty
hypercubes, which form the input for the CNN, we stretch
the data to fit into the raster. To this end, the input cloud is
normalized to the range (0,1) on each axis. This guarantees the
data to be evenly distributed over all hypercubes. The value
contained within a hypercube is determined by the number of
data points it contains [17].
Each slice of the input vector, which will be described here
on basis of an 8 × 8 × 8 sized example, has to be reshaped
to fit a designated pattern: The vector is reshaped in a way
that each row fed into the convolutional layer represents one
(x-y) slice of depth data in the original, resulting in an input
matrix of 8×64 (cf. Figure 2 showing this for the case of 43).
This way, a convolutional kernel of size 8 × 1 can be used to
initially convolve the depth-axis, resulting in an 1× 64 output
of the first kernel. No max-pooling is used in this layer. The
second layer reshapes this 1 × 64 output to 8 × 8, so that
a 3 × 3 kernel can subsequently be utilized. This layer also
implements 2×2 max-pooling, resulting in an output of 3×3.
This output is then fed into the MLP layer of the convolutional
net, which determines the output class. The resulting kernels
obtained from the training run are depicted in Figure 3.

IV. THE DATABASE

To only capture the relevant data points which are part
of the user’s right hand, distance thresholding is introduced
during the recording. Points recorded by the sensor are simply
cropped if above a certain threshold value Θ. Furthermore, the
recording takes place in a predefined Volume of Interest (VOI)
to ignore irrelevant data points to the sides of the user’s hand.
The resulting data is denoted a point cloud (PC) of a posture.
Our database comprises 10 different static hand postures
recorded with the Creative Gesture Camera. The individual
postures are denoted ONE, TWO, THREE, FOUR, FIVE,
FIST, FLAT, GRAB, PINCH, POINT and described in Figure
1. These hand postures were chosen as a trade-off between
meaningfulness and difficulty (in terms of disambiguation).
With respect to the meaning of the postures, all of them
can be facilitated to represent typical functions addressable in
infotainment systems. Counting from one to five, for instance,
can be used to switch radio channels. Other postures can be
used to interact with audio (FLAT) or to choose elements
(POINT). The difficulty in disambiguation results from the
fact that the difference between some postures is defined by
one finger only (e.g., ONE vs TWO) which, depending on the
distance to the sensors, is equivalent to as few as 20-40 voxels.

The sensor is mounted in front of the user recording the
nearby environment from an orthogonal angle. Each posture is
performed and recorded 3000 times. In order to induce some
variance into the data, each participant is asked to translate
and rotate her/his hand during the recording. Furthermore, the
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Fig. 2. Setup of the CNN structure with two convolutional layers. Top row: First convolution step and reshaping. Center: Second convolution step and
max-pooling. Bottom: MLP structure and input.

Fig. 3. The resulting kernels from the first filter grouped together for each posture from the data set (cf. Figure 1). The first layer of the CNN produces 20
different kernels. All 20 kernels produced per gesture are grouped and presented in analogous order from left to right, top to bottom.
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Fig. 4. The three zones of the recording: Near, intermediate and far.

recording area is divided into three zones: near (15-30cm),
intermediate (30-45cm) and far (45-60cm) with respect to the
distance between sensor and hand. During the recording the
median of the captured PC is calculated and the sample is
included into the database depending on the zone it is captured
in. After 1000 samples have been captured within the near
zone, the participant is asked to perform the next 1000 samples
in the following zone. This way we ensure that the sum of
recorded hand postures per participant is equally recorded over
all three range zones.

The result of such a recording can be seen in Figure
5. The resulting point cloud is depicted for two different
snapshots in subsequent movements (top vs. bottom) of the
same participant from two different angles (left vs. right).
Points closer to the sensor are depicted in yellow color, points
further distant in a dark green color. Depending on the angle
the user postures her/his hand toward the sensor, more or
less light is reflected back and hence the precision of the
measurement suffers. Another possible source for noise is the
fact that depth measurement relies on the amount of light
reflected from the object, however too much light reflected
over-saturates the measurement. This is visible by the amount
of noise (or outliers) existent in the image. In the upper
row, the user poses in a rather orthogonal angle towards
the sensor, therefore there are less outliers visible towards
the edges of the object. As compared to the bottom row,
more outliers are recognizable as can be seen in the front
view (left) and the side view (right) of the same posture.
Dealing with noise is an important factor for the task of hand
posture recognition in particular as depth sensors typically
have a lower resolution than RGB cameras and therefore
data samples suffering from much noise tend to strongly
impede the employed algorithms. Consequently, no filtering or
noise reduction techniques have been utilized to remove said
outliers. However, due to the movement performed by each
individual during the recording, the amount of data points
belonging to the forearm differs strongly as can be seen in

Fig. 5. Sample recording of a hand posture. Top row: The same posture from
the front view (left) and the side view (right). Bottom row: The same hand
posture in a subsequent state taken after the snapshot in the top row (same
angles). Noise and outliers resulting from errors in measurement are clearly
visible when seen from the side view (right column).

Figure 5 (top left vs. bottom left). Data points belonging to the
forearm carry no information necessary to distinguish any of
the posture in the database therefore we employed a cropping
algorithm relying on a Principal Components Analysis (PCA)
of the hand-arm object. Automatically removing most of the
forearm results in a smaller first principal component, and
more relevant information included in each sample, leaving
only the palm and the fingers.

Results are visible in Figure 5 (top left vs. bottom left).
As compared to the uncropped Point Cloud, the result of
removing most of the forearm clearly shows the advantage
of PCA cropping, namely the reduction to the essential parts.
The following chapters demonstrate a sample infotainment
application as well as the experiments and results of a standard
pattern recognition algorithm. This is included as a perfor-
mance baseline and to establish a well-defined experimental
procedure, in order to allow other algorithms to be compared
meaningfully.

V. EXPERIMENTS AND RESULTS

The results of our experiment run are presented in Table I.
We have conducted a series of experiments to test the validity
of our approach on unseen data. To this end, each column
represents the Classification Error (CE) achieved on Person p
from the database when the network is trained on all the other
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data samples except on data coming from person p. Thus Table
I shows the results of an n-fold cross-validation run on the
presented database. Experiments are conducted on an NVIDIA
GTX 780 Ti using the Theano implementation of a CNN. As
memory is limited for preparing and storing the data samples
only 2000/3000 samples per gesture and person are randomly
selected and taken for training and validation. Consequently,
each run trains a CNN on 19 persons with 20.000 gestures
samples each yielding a training set of 380.000 samples and
a validation set of 20.000 samples.

The results show slightly varying, however very satisfactory
performance. With the approach presented in this contribution
we are able to demonstrate the robustness of the underlying
methodology. Performance peaks with the model obtained for
person 13 (1.5% error) and for 14 out of 20 persons error
rates around or far below the 15% mark are achieved which is
significant for such a large and diverse validation set of unseen
data. This underlines the fact that CNNs paired with our data
transformation technique are able to generalize well on this
complex problem. Considering the fact that we are able to
produce up to 40 classification steps per second this is more
than enough to realize a real-time application which produces
satisfactory behaviour. The main drawback is the somewhat
poor performance on persons 2, 4, 7 and 19 with CEs ranging
from 30,5% to 48,3% and has to be attributed to various factors
such as e.g. user behaviour or noise in the measurements. An
in-depth evaluation shows the very specific way in which the
persons in question pose one and the same gesture during
the process of the recording with a rapid change in finger
positioning. This is one of the main reasons for the system’s
fluctuation in performance as the CNN tries to capture all the
possible variants of the given classes which leads to problems
in those cases where gestures are similar and somehow posed
’wrongly’ by some participants. As for the training time, most
of the CNNs converged quickly with as few as a thousand
iterations (corresponding to roughly 1h train time) required
for finding their global optimum in most cases with only
one case (more than 22K iterations for person 14) requiring
extensive parameter search. This is, however, the case which
simultaneously corresponds to the model generalizing best
with a CE of 1,5%. The termination condition for training
is the non-improvement of the CE on the validation set for
100 subsequent epochs which in this case demonstrates the
potential of extended optimization search. Execution time for
a single sample falls well below 1 ms which is negligible in
regarding system workload.

VI. SYSTEM SETUP AND LIVE DEMONSTRATION

Our system consists of the Creative Gesture Camera record-
ing the VOI in the interior of the vehicle just before the front
console with a lateral resolution of 320 × 160 of the depth
sensor [18]. The iPad is mounted to the front console and
runs an application with typical infotainment scenarios (media,
maps, contacts, phone, climate). Figure 7 shows four of the
sixteen (sub-)screens of the infotainment system. Overall, typi-
cal functions such as media or navigation selection, navigating

Fig. 6. Our system setup with an iPad and the Creative Gesture Camera as
described in Section VI.

Fig. 7. Sample screens of the infotainment system running on a mobile tablet:
Contacts, Navigation, Phone and Climate (top to bottom, left to right).

through submenus, browsing and turning music on/off are
addressable through the freehand gestures.

The camera is connected to a standard laptop which in
turn is responsible for recording the VOI in the nearby driver
zone, cropping of the recorded point cloud (PCA cropping
to remove irrelevant arm parts) and processing the cloud to
compute the features to subsequently pass them to the CNN
for classification. We implemented an averaging window to
record 20 snapshots in a row and produce a classification
results for each. The final decision, which corresponds to
the interpreted gesture sent to the iPad, is produced by max-
voting. As our systems works with 35-40 fps this is more
than sufficient to balance the confidence in decision-making
and real-time capability. An additional delay after each gesture
is sent, creates a more realistic setting for the application to
be tested as the system pauses for interaction and proceeds
with the received input1.

1See the attached video for a live demonstration. Results in real-time are
difficult to measure, however this short demonstration shows the robustness
of our approach, its applicability and extendability as well as the work-flow.
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TABLE I
CE PER PERSON (IN PERCENT, 2ND ROW) AND NUMBER OF ITERATIONS (IN THOUSAND, 3RD ROW) PER TRAINING RUN

Pers. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
CE 15.3 48.3 21.3 33.3 12.6 16.4 40.3 20.8 4.6 9.5 7.2 5.4 1.5 2.7 3.5 6.2 8.0 12.0 30.5 14.4
Iter. 8.3 1.1 3.7 1.5 1.2 0.6 1.8 5.5 11.9 1.9 7.9 9.1 1.0 22.2 3.6 6.5 2.0 4.5 1.7 1.6

VII. CONCLUSION AND OUTLOOK

This contribution shows the effective utilization of Deep
Learning in form of a CNN for recognizing freehand gestures
from depth data. We present a novel approach of transforming
point clouds into a data format of fixed size allowing the CNN
to extract the necessary information in form of filters to be
learned for the task of object recognition. Our system is easy to
set up as it requires only a single depth sensor to be positioned
in roughly the same distance as during the recording of the
database, thus avoiding the need for cumbersome calibration
procedures. Once set up, the gesture recognition pipeline sim-
ply crops the vehicle interior, extracting depth information of
arm, palm and finger position which is subsequently cropped
again as to get rid of the ’irrelevant’ part of the arm. The
features are then extracted and presented to the CNN for
classification. The neuron with the highest activation in the
output layer corresponds to the class in question. Through
a max-voting scheme we are able to take into account 20
consecutive snapshots for the decision making in order to
stabilize the system over time. Not only is this a light-weight
approach able to achieve up to 40 fps but it also allows
to stabilize the system’s performance achieving recognition
rates of up to 100% during execution time for some gestures.
The problem of scaling, translation and rotation is addressed
through incorporation of many varying data samples during
the recording of the database. The hand gesture recognition
pipeline presented in this way demonstrates how a single low-
cost sensor (<200$) in combination with a simple yet robust
and effective data transformation for CNNs yields a real-time
capable HGR system. It furthermore brings along the desirable
features of illumination invariance and quick sensor calibration
due to the way features are extracted. Further work will
address the applicability of the approach to include dynamic
gestures as well as the optimization of the system for the given
scenario.
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