
Text and Character Recognition on Metal-sheets

Jan Kronenberger
Institut Informatik

Hochschule Ruhr West
Bottrop, Germany

jan.kronenberger@stud.hs-ruhrwest.de

Darius Malysiak
Institut Informatik

Hochschule Ruhr West
Bottrop, Germany

darius.malysiak@hs-ruhrwest.de

Uwe Handmann
Institut Informatik

Hochschule Ruhr West
Bottrop, Germany

uwe.handmann@hs-ruhrwest.de

Abstract— To improve the automation of metal sheet produc-
tion these sheets have to be tracked during the processing steps.
This is preferably done by video optical tracking. To recognize
the metal sheets each of them has an unique ID imprinted. This
paper describes a method to automatically detect the characters
on metal sheets, to classify them and to combine them to a string.
First the image is preprocessed to detect the metal sheets in the
image. After this step every character is located and classified.
Finally all characters are combined to one string with its specific
certainty. The algorithm has to determine about the alignment
and the orientation of the text because it is not known before.
The most problematic part is the extraction of the objects,
which may be characters, due to difficult lightning situation.
There can be different lightning spots visible in the image
because of the movement of the sun, weather and factory
infrastructure (windows, ceiling lighting) which cause sometimes
difficult reflections on the metal sheets.
The introduced program is completely written in Matlab 2015b.
It has been applied to a wide range of images with successful
results.

Index Terms— Pattern recognition, classification, Matlab

I. INTRODUCTION

In order to read text from an image it is necessary to do
some situation regarding preprocessing. Figure 1 shows an
example image as it is captured from the cooling bed of
a german company producing metal sheets. Each image is
greyscale, has an resolution of 1032 × 1592 pixels and a
depth of 12bit.

Because the character printing system uses only one font
with fix defined size and space between characters, some
assumptions can be made to reduce the complexity of the
algorithm. The first assumption can be made regarding the
characters due to the fact that each character will not change
during time and there will be no new characters added. There
will be only small differences due to lightning influences.
Another assumption is the limitation of only one line per
sheet, which has to be detected. This line is always parallel
to the long sheet edge. Sometimes there even is no text
printed on the metal-sheets or the text is outside of camera
capture area. As there is no tracking implemented between
two following images each image is processed without any
prior knowledge.
First some State of the Art Papers are presented in Section

Fig. 1. Metal sheets on conveyor in cooling bed. The camera is mounted
above it.

II. In Section III the sheets are detected using morphological
operations. Section IV is about finding the text-area on the
sheet. In Section V the chars are classified within the previous
found text-area. These Characters are combined into one
string, which is described in Section VI. Additionally a
certainty for each string is given. Finally Section VII shows
the performance of the proposed system.
The system is designed to work with all numbers and every
character of the alphabet, but as the given data-set does not
contain all possible characters, this will lead to some gaps in
the evaluation (See Figure 13). Any difficulties which may
appear when all characters would be used are not studied.
Figure 2 shows the block diagram of the program. The
whole process is done once per image without tracking or
remembering. The block diagram shows the splitting part,
where the text is processed once at 0◦ and once at 180◦.
Except the rotation part both variants do exactly the same.
After calculating the scores of both detected texts, the one
with the higher score will be selected, validated and passed
to the visualisation part.

II. RELATED WORK

The problem with pattern-matching in digitized images
with Machine-printed characters was already tried to solve
with different approaches. Some algorithms are proposed by

978-1-5386-3154-6/17/$31.00 ©2017 IEEE

Proceedings of the 2017 IEEE
International Conference on Information and Automation (ICIA)

Macau SAR, China, July 2017

392

read image

detect
sheets

rotate 180
degree

find
textarea

classifiy
chars

combine
chars

find
textarea

classifiy
chars

combine
chars

select
higher
score

check
if valid

output

bounding
boxes

remove
small
sheets

binarize

open

erode

Section III

remove
false

objects

find
textline

if necces-
sary cut

close

remove
small

gradient

Section IV

resize

histogram
equalize

compare
patterns

select
highest
score

Section V

Fig. 2. Block diagram

Safronov et al. [1]. They described the advantages of the
different techniques and their application area. To classify
broken characters Babu et al. [2] used gradient patterns
and their relationship. Hoffman and McCullough [3] divide
the characters in vertical strokes or detect their contours to
classify them. But this method requires a higher resolution
of the characters which is not given here. Others like Li
[4] require binary images. This works well for scanned
documents with know fonts and with sharp edges on the

text. The lightning situation in this project gives us quite
unsharp images of the characters. Another advance technique
is the graph matching shown by Rocha and Pavlidis [5]. Their
performance is quite good, but it requires a well working
graph extraction on the input data to get reliable results.
In this case the assumptions which are made for this solution
allow to prevent such computationally expensive algorithms.

III. SHEET DETECTION

As seen in Figure 1 the image contains a lot of noise
which should be removed before the sheets could be detected
safely. Therefore two morphological operations are applied.
First the image is eroded with an 25 × 25 pixel diamond
pattern (See Figure 3) to shrink high value areas (Top left
in Figure 4). This will lead to a more smooth image without
high frequencies.

Fig. 3. Diamond Pattern for eroding

Fig. 4. Steps of the sheet-detection: 1. Erode, 2. Open, 3. Remove small
objects, 4. Thresholded

In the next step the image is morphological opened [6] to
clean the contours and to remove remaining spots which is
shown in the top right sub-figure. On the bottom right the
result is thresholded to get a binary image. In the final step
all connected pixel are combined into objects. Objects having
a smaller area as a given threshold are removed. This result
is displayed at the bottom right.

393

At this point the detected objects are cut out for faster
computing. They are rotated as well to make the edges of
the sheet be parallel to the x- and y-axis of the image. This
will remove the problem of only having invariant patterns in
section V.
Because the orientation of the text is unknown, the image is
processed two times. One time as it is cut out and the second
time rotated at 180◦.

IV. TEXT-AREA DETECTION

To localize the chars an edge detector is applied and
the image is binarized. Now all connected components are
selected as one object. If one object contains less than 40
pixels it is removed. To close small gaps and prevent false
grouping the image is morphologically closed with mask =

0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0

.

This will lead to a list of objects. To find the text-line, false
objects have to be removed. Fitting an horizontal line through
all objects gives the ability to remove objects with a large
offset to this line. This is possible because the sheet was
rotated before and we assume there is only one text-line.
Figure IV shows an example of the text-line fitting.

x

y

objects

predicted textline

Fig. 5. Finding the text-line. As the bottom char object is too far away
from the text-line, it will be removed

Therefore the center-point of every object is calculated and
the distribution is plotted along the y-axis. The text-line is
now determinated at the point with the highest distribution.
The objects are now filtered regarding to their dimensions.
If the height is less than 14 pixels and the width is less
than 5 pixels, the object is removed. This filtering is possible
due to the assumption that the font will not change and
the distance of the camera to the sheets will always be
the same (Appearance on the image will not change). But
as the transition between two or more adjacent characters

may not be clean, multiple characters could be packed into
one object. Because we know the aspect ratio of the printed
characters (≈ 2), the amount of characters in this object can
be calculated by the dimensions of the object with

count = round(
width

height/2
) (1)

The object is then divided every width
count pixels and stored in

count new objects. Figure 6 shows the steps of the object
detection. On the top left the sheet-image is displayed. The
top right image shows the edge detection. In the next step the
objects are extracted and finally in the fourth step the false
objects are removed.

Fig. 6. Steps of textarea detection: 1. Croped sheet-image, 2: Result of the
edge detection, 3. Possible objects are selected, 4. Removal of false objects

As this list of objects could still contain non-characters
each object now has to be classified

V. CHARACTER CLASSIFICATION

At first the templates for the classification have to be
generated. Therefore all labeled images of one character
are resized to 20 × 10 pixels, summed up and normalized
(Figure 7) into one pattern. To remove the background of
one character image, the lowest pixel value of the image
is subtracted at each pixel. As the background pixel value
is very uniform, this simple subtraction removes nearly
everything unnecessary.

To get the character for one detected object the metal-sheet
first has to be processed in the same way as the pattern was
while learning. To get the same result first the background
is subtracted, then the image is normalized and finally it is
re-sized to the size of the patterns. The formula

r =

∑
m

∑
n(Amn − Ā)(Bmn − B̄)√

(
∑

m

∑
n(Amn − Ā)2)(

∑
m

∑
n(Bmn − B̄)2)

(2)

[7] calculates the difference between an image A and an
image B, where Ā and B̄ are the mean values of A and
B. The result describes the similarity of the images between
1.0 (100%) and 0.0 (0%). Figure 8 shows the similarities
between the input image and all patterns.

394

Fig. 7. Normalized averages of different patterns

Fig. 8. Matching against all patterns.
green line: highest value
red line: second highest value

As greyscale patterns are used, there are many advantages
to binary patters like they are used in [8]. While binary
patterns would produce worse results in matching when they
are not perfectly arranged to the input image, our greyscale
patters will allow small invariances in scale, rotation and
location due to its smoothness.

To measure the confidence of the classification two parts
are considered.

1) Total score (T1)
2) Difference to second best score (T2)

A good value for the total score is T1 = 0.6 and for the
difference T2 = 0.01. The difference value T2 has to be
that low because of similar pattern like 6 and 8. If it is too
high these patterns can not be stably kept apart. For further

explanation see Section VII-A.

VI. TEXTBUILDING

At this point there are two object arrays. One for the sheet
rotated at 0◦ and one at 180◦. Each array contains a list of
characters with a score and a confidence per character.

Fig. 9. Final output

To figure out which array should be taken the scores of
each array are summed up and compared. The one with
the higher score will be selected. This method works only
if there are some rotation invariant characters in the array.
Some characters which are not rotation invariant are 0, 8,
O and H. If the x-Coordinate of the objects containing two
adjacent characters is greater than a threshold, a space is
inserted between them. Figure 9 shows an example output
image, where the sheets are marked with a bounding-box
and the text is displayed. Notice every space is written as
”-”. If any character in the selected array has a low score
or confidence, the text-string is still build, but with a wild
card on the characters position. Alternative the strings with
the highest scores could be printed.

VII. EVALUATION

The evaluation is divided into two parts. Part VII-A
describes the certainty of the trained dataset. Part VII-B
evaluates the trained dataset against a test-set of characters.
As the data only contains following characters 012345678VN
there will be some gaps for the other characters in the
evaluation (Figure 10 and 13). Remaining problems in this
solution are discussed in part VII-C.

A. Patternconfidence

As mentioned in Section V some patterns are very equal
which makes a certain detection difficult. To get a score for
the trained patterns each pattern is compared to each other.
The comparison is done like in section V [7]. Figure 10
shows the result of the comparison in the form of a confusion
matrix.

395

Fig. 10. Confidence between patterns. The higher the more equal

Most of the patterns have a similarity of about 40 to 60%.
The resulting difference between the character 6 and 8 is
only 13, 63% (Shown in Table 11). If there is less similarity
between the patterns, the character classification will be more
certain, but it might happen that a character is not classified
because the difference to the pattern is too high (overfitting).
This happens when there is too much training. To check if
there is overfitting the trained data is tested against a set of
images which were not used in the training in section VII-B.

Pattern 1 Pattern 2 Score
6 8 0.8637
0 8 0.8366
· · · · · · · · ·
2 4 0.3015
1 V 0.2520

Fig. 11. Lowest and highest similarity between patterns. 1 = equal

B. Character classification

To evaluate the char-detection a test-set with 513 labeled
chars is created which is about 40 - 50 images per char. This
set does not contain any char on which the training-set was
trained on.

Training 513
Test 123
Total 636

Fig. 12. Images in Testset

To measure the performance a confusion matrix (Figure
13) is created. It shows how many images of e.g. class 7

were correctly classified. Any false classification is marked
outside the diagonal. If any character could not be classified
with a high score or good confidence it is categorized as ?.
The perfect confusion matrix would be an identity matrix,
where 100% of each class is classified correct.

Fig. 13. Confusion matrix of all trained Characters

Character Total Images Right False Unsure
0 74 71 0 3
1 7 7 0 0
2 16 16 0 0
3 2 2 0 0
4 10 10 0 0
5 4 4 0 0
6 2 2 0 0
7 2 2 0 0
8 2 2 0 0
V 2 2 0 0
N 2 2 0 0

Fig. 14. Classification Results

The confusion matrix shows that the characters are classi-
fied correct at a rate of 97, 56%. 3 images of the character 0
could not be classified with confidence and where categorized
as ?. As suspected in section VII-A the classification for the
characters 0 and 8 is very difficult and may be wrong if there
are any misleading reflections.

C. Remaining problems

The performance of the system depends on many steps. If
the first steps fail or produce bad results the final result will
be bad as well. The first big problem is the sheet detection. If
a sheet is not or false detected, there would be no character
detection. This mostly occurs when there are multiple sheets
very close or on top of each other.

396

The second problem concerns the detection of the characters.
Due to the lightning many false-positives are selected. Most
of them are deselected when the textarea is found, but they
can disturb the textarea detection.

VIII. CONCLUSION

In this article a fast text recognition system is introduced.
The comparison on such small templates is very fast because
of the few pixels which have to be compared and because
there is no need to extract features like lines or shapes. The
process could be speeded up, if there would be some tracking
implemented. Right now, the orientation of the sheets has
to be calculated every time again. This can be skipped if
the orientation would be know from the prior image. The
accuracy would increase, too.
Overall this method works well if there are no light spots
which outshine parts of the image. Especially when parts
of the text are outshine the text-detection will not work.
Additionally the pattern matching works only if the font of
the chars do not change. This would break the assumptions.
This system shows an overall performance of 97, 56% for the
character classification.

REFERENCES

[1] K. Safronov, I. Tchouchenkov, and H. Wörn, “Optical character recog-
nition using optimisation algorithms,” University of Karlsruhe, Tech.
Rep., 2007.

[2] R. Babu and M. Ravishankar, “Recognition of machine printed broken
characters based on gradient patterns and its spatial relationship,”
Dayananda Sagar College of Engineering, Tech. Rep., 2010.

[3] R. L. Hoffman and J. W. McCullough, “Segmentation methods for
recognition of machine-printed characters,” IBM General Systems, Tech.
Rep., 1970.

[4] N. Li, “An implementation of ocr system based on skeleton matching,”
University of Kent at Canterbury, Tech. Rep., 1991.

[5] J. Rocha and T. Pavlidis, “A shape analysis model with applications to
a character recognition system,” IEEE, Tech. Rep., 1994.

[6] MathWorks. Gradient magnitude and direction of an image. [Online].
Available: https://de.mathworks.com/help/images/ref/imgradient.html

[7] ——. 2-d correlation coefficient. [Online]. Available:
https://de.mathworks.com/help/images/ref/corr2.html

[8] F. Mohammad, J. Anarase, M. Shingote, and P. Ghanwat, “Optical
character recognition implementation using pattern matching,” ISB M
School of Technology, Tech. Rep., 2014.

397

