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Lützowstraße 5

46236 Bottrop, Germany
Email: uwe.handmann@hs-rw.de

Abstract—We present a light-weight real-time applicable 3D-
gesture recognition system on mobile devices for improved
Human-Machine Interaction. We utilize time-of-flight data com-
ing from a single sensor and implement the whole gesture
recognition pipeline on two different devices outlining the po-
tential of integrating these sensors onto mobile devices. The
main components are responsible for cropping the data to
the essentials, calculation of meaningful features, training and
classifying via neural networks and realizing a GUI on the device.
With our system we achieve recognition rates of up to 98%
on a 10-gesture set with frame rates reaching 20Hz, more than
sufficient for any real-time applications.

I. INTRODUCTION

As mobile devices are increasingly becoming the means
of accessing the internet and the number of mobile phones
nearly exceeds the world population, while the number of
devices already exceeds the population size in most developed
countries, the demand for new applications and new ways of
interacting with them grows rapidly. Most of the smartphones
available on the market are equipped with standard color
cameras. However, devices with a ’real’ 3D sensor are just
beginning to enter the market with primary focus put on tablet
PCs with smart phones following, as questions like power
consumption and heat development being the main issues of
concern.
Mobile devices have established multi-touch interfaces as de-
facto standard for interaction as gestures provide a natural
and intuitive means of control. Nevertheless, two-dimensional
interaction faces certain restrictions, e.g. when trying to control
objects in a virtual three-dimensional space. In such situations,
space is limited on a device hence the interface has to be
adapted accordingly. Three-dimensional gestures provide a
solution by bringing along the third dimension for interaction
while being more ’natural’ as a means of control because
manipulation of objects becomes more direct in the sense that
cumbersome 2D-mapping can be omitted.
We present a real-time 3D-gesture recognition system for
mobile devices and demonstrate how it can be incorporated
into various Human-Machine Interaction (HMI) scenarios.
Due to lack of availability we outsource the only step of data
recognition via time-of-flight (ToF) technology onto a Laptop
and implement the whole gesture recognition pipeline on a

mobile device. We achieve recognition results of up to 90% on
a 10 gesture set with a frequency of up to 20Hz. As the sensor
technology is robust vs. any kind of lighting interferences, our
system, being small in dimension, is applicable to possibly any
kind of scenario.
The rest of the paper is set up as follows: We provide
an overview of the relevant contributions to this topic in
Section II. We go on to describe our hand gesture recognition
pipeline along with the established database in Section III.
The algorithms at the core of our system are responsible for
creating descriptive features which is outlined in Section IV.
These features serve as inout for our Neural Network module
which is responsible for the hand gesture recognition part
described in Section V. The process of detecting static and
dynamic gestures is presented in Section VI. We corroborate
the functionality of our system with a series of experiments by
demonstrating that stable, satisfactory results are achievable in
real-time in Section VII. Finally, in Section VIII, we conclude
with a brief discussion and an outlook on future work.

II. RELATED WORK

As mentioned before, for temperature and energy consump-
tion reasons, there has yet to be developed a mobile phone
employing ToF-sensor technology. Therefore, research in this
direction is scarce. When looking at work conducted towards
3D interaction with gestures on mobile devices most of it is
addressing accelerometer or stereo camera usage. To the best
of our knowledge, there exists no work, trying to leverage ToF-
technology to implement a real-time hand gesture recognition
system, while work utilizing ToF-sensors for 3D interaction is
abundant.
Henrysson et al. [1] research the idea of utilizing a phone’s
camera to move and rotate tangible objects for an augmented
reality (AR) application, however it is focused rather in the
direction of usability questions. The work of Gao [2] is
directed towards making an AR App for handheld devices
using a PrimeSense camera. His approach is heavily relying
on skin color detection making a robust outdoor application
difficult to realize. Nevertheless, the device is connected via
USB to the tablet, making the data recording possible on the
device directly. The work of Matilainen et al. [3] detects hands
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gestures via template matching on data coming from an RGB
camera for mobile phone interaction.

III. SYSTEM SETUP AND HAND GESTURE DATABASE

The setup of our system can be seen in Figure 1. The
ToF-sensor is mounted to the front console recording the
environment close to the driver. It is connected to a standard
Laptop responsible for collecting the data coming from the
sensor and sending the data packages to the iPad via WiFi.
The rest of the recognition process is realized on the tablet
and the complete pipeline is described in the next section.

A. System Setup

Fig. 1. Setup with ToF-sensor, Laptop and iPad in a car interior.

Our system consists of various modules handling the gesture
recognition task as displayed in Figure 2. The gesture recogni-
tion pipeline is divided into two main tasks: ’Data Recording
and Transmitting’ on the server side and ’Data Processing
and Gesture Recognition’ on the mobile client. The main
computation task is outsourced onto the mobile client, however
the data recording and transmitting remains on the server side.
The ToF sensor records the data in the near-driver environment
and transmits it ASCII-encoded to the mobile client. The
data package receiver module is responsible for making sure
that the whole data package for a single frame is received
completely and transmits the data package to the Point Cloud
Generator. Once the point cloud is set up, it is transferred to
the principal component analysis (PCA) module, which crops
the unnecessary parts of the forearm. This technical side of
this process is explained in more detail in Section IV-A. Once
cropped, the feature vector for the remaining point cloud is
calculated in the next step (cf. Section IV-B). This feature
vector serves as input for the training and classification stages
in the neural network (NN) classifier module. The output of the
Neural Network module determines the class for the recorded
frame at a time point t. The static gesture recognizer module
(SGR) is responsible for this part. Based on this information,
dynamic hand gestures are recognized in the dynamic hand
gesture recognizer (DGR) from the output of the SGR. Since
the whole system reacts to whether static or dynamic gestures
have been recognized, the visualizer module utilizes input
from both the SGR and DGR.

We implemented an infotainment system for testing, which
the driver is able to interact with. The static hand gestures are
mapped to static functions within the infotainment system, i.e.
responding to channel selections, accepting/declining/ending
an incoming phone call or, in the dynamic case, zooming
in/out or increasing/decreasing the volume. At the very core of
the hand gesture recognition pipeline lies our database which
is described in the next section.

B. Hand Gesture Database

We recorded data from 20 persons, each displaying 10
different hand poses (cf. Figure 3). For each gesture, 3000
samples are recorded, summing up to 30000 samples per
person and a total database of 600,000 samples. In order to
induce some variance into the data, during the recording phase
each participant is asked to rotate and translate their hand in all
possible directions. Moreover, to tackle the task of scaling, for
each gesture we define 3 different distance ranges, in which
the participant is asked to perform the hand gesture in order to
ensure sufficient sample coverage for various distances. Each
frame is recorded at a resolution of 160x120px at 90fps with
the Camboard nano, making it robust to daylight interferences
and thus applicable in any outdoor scenario. This results in an
alphabet of ten hand poses: Counting from 1-5 and fist, stop,
grip, L, point denoted by a-j (cf. Figure 3). For the chosen
participants, both male and female, the size of the hand ranges
from 8,5cm - 9,5cm in width and from 17,0cm - 19,5cm in
length.

IV. PCA CROPPING AND FEATURE CALCULATION

The module responsible for pruning the point clouds from
its unnecessary parts - in this case the forearm for which it is
difficult to predict to what extent it is contained in each cloud
- is the PCA module, as mentioned in Section III-A. Once the
important parts remain, the feature calculation for hand palm
and fingers can be performed. These steps are described in the
following two sections.

A. Finding the principal axis of a point cloud

The main directions of the cloud are found using Principal
Component Analysis (PCA) [4]. PCA aims to find uncorrelated
basis vectors for an arbitrary set of data vectors. Eigenvectors
(also termed ”principal components”) are ordered by the
variance of data points projected onto them, allowing efficient
data compression by omitting principal components of low
variance. This algorithm is applied as shown below, using as
input the set of n 3D coordinates of points in a point cloud
denoted xj , j ∈ [0, n]).
• The mean value x̄ = 1

n ·
∑n

j=1(xj) is computed.
• The scatter matrix is calculated :

S =
n∑

j=1

(xj − x̄)(xj − x̄)>

This matrix can be used as maximum-likelihood estimate
of the covariance matrix.



ToF Sensor Data Package Handler

Data Package 
Receiver

Point Cloud 
GeneratorPCA Module

Static Gesture 
Recognizer

Dynamic Gesture 
Recognizer

Data Recording 
and Transmitting 

(Server)

Data Processing and 
Gesture Recognition 

(Mobile Client)

Visualizer

Feature 
Calculation

NN Classifier

Fig. 2. The whole gesture recognition pipeline as described in Section III-A

Fig. 3. The hand gesture database consisting of 10 different static hand poses.

• The Eigenvectors of this matrix yield the principal com-
ponents.

We intend to cut off ’unnecessary’ parts of the cloud, i.e.
outliers and elongated parts of the forearm. In this case, the
principal components correspond to orthogonal vectors that
represent the most important directions in the point cloud.
The vector with the most important y-component allows to
recognize the axis hand-forearm.

The wrist, as the link between the hand and the forearm,
is detected in order to determine a limit for the cropping.
The employed method assumes that the distance between the

endpoint of the fingers and the centroid is an upper bound of
the distance between the centroid and the wrist.

To find the endpoint of the hand towards the direction
of the fingers, tests are made along the axis, starting at the
centroid and moving progressively upward. At each step, we
determine whether there are points within a designated small
neighborhood around the axis. The upper end of the hand is
marked if this number of neighboring points equals 0. Then
the bottom limit for the wrist is fixed at the same distance from
the centroid, but in the inversed direction along the y-axis. All
points below this wrist limit are cut out which is exemplarily



Fig. 4. Point cloud before PCA-cropping (left) and after (right).

shown in Fig.4.

B. Forming descriptive feature vectors from Point Clouds

The PFH-Descriptor (PFH-Histogram) [5] is a local descrip-
tor which relies on the calculation of normals. It is able to
capture the geometry of a requested point for a defined k-
neighbourhood. Thus, for a query point and another point
within its neighbourhood, four values (the point features or
PFs) are being calculated, three of which are angle values
and the fourth being the euclidean distance between these two
points. The angle components are influenced by each point’s
normal, so in order to be able to calculate them, all the normals
have to be calculated for all points in the cloud. Therefore we
are able to capture geometric properties of a point cloud in a
sufficient manner, depending on the chosen parameters. These
parameters have been thoroughly examined in our previous
work which led for example to an optimal choice for the
parameter n, the radius for calculation of the sphere which
encloses all points used to calculate the normal of a query
point. One major drawback is the fact that the PFH-descriptor
cannot be easily embedded into a real-time applicable system
as the computation cost becomes too high, when extended
to a global descriptor. To overcome this issue, we present a
modification of the PFH-Descriptor.
Our version of the PFH-Descriptor makes use of its descriptive
power while maintaining the real-time applicability. Using the
PFH in a global sense would mean having to enlarge the
radius so that every two point pairs in the cloud are used
to create the descriptor. This quickly results in a quadratically
scaling computation problem as a single PFH-calculus would
have to be performed 10000 times for a point cloud of 100
points. Given the fact that our point clouds have a minimum
size of 200 points up to 2000 points and more, this is not
feasible for our purposes. Therefore we randomly choose
10000 point pairs and use the quantized PFs to build a global
625-dimensional histogram. We calculate one descriptor per
point cloud which forms the input for the neural network. We
have conducted numerous experiments with this descriptor in
various application scenarios and found it to be well balanced
in terms of descriptiveness and computation cost.

V. NEURAL NETWORK TRAINING AND FEATURE FUSION

We trained two MLPs and divided the database accordingly
to allow for the implementation of a sophisticated fusion
technique. Both MLPs have three layers - input, hidden and
output layer. Extensive parameter search in work conducted so
far yielded this network structure with 50 hidden neurons in
each MLP and standard parameters for training. Each output
layer comprises 10 neurons corresponding to the 10 hand
pose classes. The first MLP has an input layer of size 625,
corresponding to the size of the feature vector while the second
MLP has an input layer of size 635 - the size of the feature
vector added to the number of output neurons of the first MLP.
Each Point Cloud is transformed into a histogram of length
625 - as described in Section IV-B and fed into the first MLP.
The MLP processes the feature vector, determines the neuron
values in the output layer and concatenates these values again
with the feature vector which is then presented as input into
the second MLP. The neuron with the highest activation in the
second MLP corresponds to the designated class. For more
information please refer to our preceding work in e.g. [6] as
the theory is beyond the scope of this paper. We have tested
various techniques for this problem and this fusion approach
resulted in the best generelization performance. The neural
network architecture was implemented using the FANN library
[7].

VI. STATIC AND DYNAMIC GESTURES

We define hand gestures as being dynamic, i.e. changing
in state over time, and they can be contrasted against static
hand poses which in turn do not change in state. Therefore, in
an in-car infotainment system, a static hand pose as the one
pose could be connected to selecting the first audio channel
while a dynamic zooming in/out gesture could be applied in
a typical maps application. Our approach makes use of the
simple fact that a dynamic hand gesture must have a clearly
distinguishable starting pose and a clearly distinguishable end-
ing pose. Consequently a ’grabbing’ movement can be defined
by starting as hand pose ’h’ and ending as hand pose ’f’ in our
hand pose database. This is a clearly defined feature and serves
as a universal definition in that any kind of dynamic gesture
can be captured in this sense. The number of theoretically
definable gestures therefore sums up to n(̇n−1) = 90 gestures
definable from our static database, as any case is bidirectional
i.e. a gesture from ’a’ to ’b’ can be performed vice versa.
We denote a static hand pose as a state s at any given point in
time t: st. A sequence of n occurrences of a certain hand pose
is defined as < st=0, ..., st=n >. During the interaction phase
our gesture recognition module takes consecutive snapshots
which are interpreted by the system via a voting scheme. For
a series of 10 consecutive snapshots, a static hand pose is
recognized by the most frequent occurrence within this series
if the occurrence is above a certain threshold. In order to take
into account that our frame rate can vary between 5-20Hz,
a threshold of 7 yields satisfactory performance in terms of
recognition rate and user acceptance as the feedback has to
be provided to the user and in order to suppress too frequent



changes.
We use this as a basis of defining dynamic hand postures
within this time series as follows. For a dynamic gesture any
occurrence of the starting state at any given point in time
sstt followed by any occurrence of the ending state sent+m with
m ≥ 1 within the observed time series corresponds to the clas-
sification of the sequence as containing the dynamic gesture:
< st=0, ..., s

st
t , ..., .sent+m, ..., st=n >. This the most simplified

notation which allows for the fact that misclassifications may
occur in between the detection of the starting state and the
detection of the ending state. The only condition being made
here is that both classifications must occur within a certain
time frame and that the starting state must be detected before
the ending state.

In order to stabilize recognition results, a simple extension
of the definition above can be made. As soon as one occurrence
of a starting state is made this starting point of a gesture is only
taken as valid if it is immediately followed by one or multiple
occurrences of the same state, i.e. sstt = sstt+1. The same rule
can be applied for the the ending state of a dynamic gesture.
The restriction that these consecutive occurrences of states
must form uninterrupted subchains within the observed time
frame suffices to define a robust dynamic gesture recognition
pipeline, recognizing dynamic hand gestures well in real-time
as we will see in Sec.VII. Of course a proper choice of
parameters is immanent and strongly depends on factors such
as frame rate, classification rate and user feedback. The choice
of the length of the observed time frame restricts other param-
eters as the length of the subchains for starting and ending
sequences. The benefit of this simple definition is the fact that
we allow for uncertain states or even misclassification to occur
in between starting and ending sequences of a dynamic gesture
as well as within the time frame as a whole. Additionally, as
we found out during the testing phase, this approach provides
extra flexibility as every user has a different way of performing
a gesture and thus an otherwise more restrictive definition of
a dynamic gesture can be too obstructive.

VII. EXPERIMENTS AND RESULTS

The system was realized to work on an iPad Air with an
A7 chip with 64-bit architecture and M7 motion coprocessor
and an iPhone 4S with an A5 chip based on dual-core ARM
Cortex-A9 MPCore CPU. On both devices, gesture recognition
was realized in real-time. With the implementation described
above, we achieved frame rates of up to 20Hz. The main
bottleneck is the feature generation taking from 0.03s up to
0.1s, depending on the cloud size. Preparing the data takes
around 0.007s while classification remains at around 0.0003s
with the FANN library, being the most negligible part as are
the other steps in our frame work concerning computation
time.
The ToF-sensor employed is the camboard nano capable of
capturing 3D data with up to 90 fps under any lighting condi-
tion. Recognition rates are around 85% for 400 dynamic hand
gestures performed by 10 persons with this setup. We achieve
an averaged 74% classification rate for all static gestures with

Fig. 5. Demo Application: The ToF-Sensor is mounted to the
iPhone to be able to capture close-range interaction. A user
zooms in on the teapot with a dynamically defined gesture.

a leave-one-out cross-validation test. Individual results vary
between 51% and 98% depending on the participant.

Tests for dynamic gestures were conducted with 10 different
persons whose data is not contained in the database, i.e.,
the results given in Table I demonstrate the generalisation



performance of the system to previously unseen persons.
The system was explained aforehand to each participant and
feedback provided its response when a hand gesture was
recognized. For the experiments in this contribution, a time
frame of length n = 10 was defined, meaning that from
the moment user input is generated we observe the last 10
consecutive snapshots and the corresponding classifications in
order to determine whether a dynamic gesture is contained
or not. Moreover, we found that for a time frame of this
size, two identical consecutive starting poses and two identical
consecutive ending poses suffice to efficiently detect a dynamic
gesture.

Four gestures were defined to this end: Grab, release, zoom
in and zoom out. Each gesture can be defined via an unam-
biguous static state from our database. The grabbing motion
(shown in Fig. 5) is defined as starting with hand pose ’h’ and
ending in hand pose ’f’. The corresponding release gesture
is the exact inverse starting with hand pose ’f’ and ending
with hand pose ’h’ (cf. Fig.3). The pinching/zooming gesture
is defined analogously and can be seen as the same gesture
known from pinching/zooming in 2D in e.g. a typical maps
application. To this end, pinching is defined as starting with
hand pose ’i’ and ending with hand pose ’f’. Consequently
the inverse movement from ’f’ to ’i’ defines the zooming
gesture cf. Fig.3. All users found the concept easy to grasp
and interacted with our system by this means naturally.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
grab 10 6 3 5 5 8 6 7 5 4
release 7 6 9 8 9 8 8 9 9 7
zoom in 10 10 10 10 10 10 10 10 10 10
zoom out 9 10 7 10 9 9 10 8 9 9

TABLE I
EACH GESTURE WAS PERFORMED 10 TIMES BY EVERY PERSON. A

COLUMN ENTRY REPRESENTS THE NUMBER OF CORRECTLY RECOGNIZED
SAMPLES PER PERSON AND GESTURE.

The overall classification rate is 82.25% averaged over all
persons and gestures. There is a 100% recognition rate for
zooming in, followed by 90% for zooming out, 80% for release
and 59% for grabbing. This shows that with a robust detection
mechanism for static hand poses our approach resembles a
viable solution. However misclassifications still occur for all
hand gestures, although this amounts to only a few cases as
the statistics show. In the case of zooming in/out, the misclas-
sifications sum up to 16 and 3 cases respectively, which in turn
makes up for 1% or 0.1% of all the cases. For grab/release
the numbers are higher, namely 151 and 78 misclassifications
respectively which in turn makes up for 10% and less than 5%
of all classifications. Comparing these number to the figures
in Tab. I helps explaining why the individual gestures perform
more poorly as it seems evident that more misclassifications
of static hand poses impair the performance of the system.
However it also shows that misclassifications are allowed to
happen while a gesture is still recognized correctly, which
shows the flexibility of our approach. A more in-depth analysis
of our recordings reveals that misclassifications occur in 153

cases of all the correctly recognized gestures performed by the
participants within the time frame and between starting and
ending sequence. Nevertheless our approach helps to remain
robust by dismissing these samples. This shows that such a
simple definition of a dynamic gestures is able to provide a
satisfactory and stable performance under challenging condi-
tions in real-time. As these statistics also indicate, users tend
to remain longer in the final positions of a gesture, nearly
3-4 times longer in some cases. Hence e.g. in the case of
’grabbing’ the number of detected ending states (state ’f’ -
1160 samples) is more than 3 times higher than the number
of detected starting states (state ’h’ - 338 samples). Why that
is the case is subject to further analysis but it helps to provide
further stability mechanisms for the problem at hand.

VIII. DISCUSSION AND OUTLOOK

This paper demonstrates how a gesture recognition pipeline
for outdoor use, i.e. use under challenging lighting conditions,
is realizable with ToF-sensors on mobile devices. As the work
in this area limits itself mainly to exploiting existing RGB
cameras built into the device, we show the capabilities of mak-
ing the transition to ToF-based interaction. We demonstrate
how a real-time applicable 3D gesture recognition pipeline
can be implemented with the main computational complexity
outsourced onto the device itself. Two systems were realized
- one on an iPad serving as an infotainment replacement in
a car and a 3D demo of a tangible object which can be
rotated and translated via 3D gestures in all directions. As
mobile devices are used in nearly all possible scenarios, this
approach shows how ToF-sensors can be utilized to make
stable 3D-interaction on handheld devices happen in everyday
lives. Future work will focus on boosting computation power
in order to improve the overall recognition results as well as
developing more complex scenarios and applications. Using
time-of-flight technology allows for research applications to
work under direct sunlight, therefore potential applications
facilitating 3D-gesture control for outdoor use will also be
the focus of further research.
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