
An efficient Framework for distributed Computing in heterogeneous Beowulf

Clusters and Cluster-Management

Darius Malysiak

Hochschule Ruhr West

Computer Science Institute

Bottrop, Germany

darius.malysiak@hs-ruhrwest.de

Uwe Handmann

Hochschule Ruhr West

Computer Science Institute

Bottrop, Germany

uwe.handmann@hs-ruhrwest.de

Abstract—In the context of existing approaches to cluster
computing we present a newly developed modular framework
’SimpleHydra’ for rapid deployment and management of
Beowulf clusters. Instead of focusing only the pure computation
tasks on homogeneous clusters (i.e. clusters with identically set
up nodes), this framework aims to ease the configuration of
heterogeneous clusters and to provide a low-level / high-level
object-oriented API for low-latency distributed computing.
Our framework does not make any restrictions regarding the
hardware and minimizes the use of external libraries to the
case of special modules. In addition to that our framework
enables the user to develop highly dynamic cluster topologies.
We describe the framework’s general structure as well as
time critical elements, give application examples in the ’Big-
Data’ context during a research project and briefly discuss
additional features. Furthermore we give a thorough theoretical
time/space complexity analysis of our implemented methods
and general approaches.

Keywords-cluster management, distributed computing, be-
owulf cluster, efficient distribution, load balancing

I. INTRODUCTION AND PREVIOUS WORK

There exists a wide variety of different Big-Data prob-

lems, be it in scientific research or industrial applications.

Developed solutions (algorithms or systems) often benefit

from computation clusters, i.e. they are constructed to be

paralizable such that they may be distributed among many

computation nodes.

Although cluster computing is a very interesting and active

field of research, it is difficult to access for many (small)

research institutes. Professional high performance systems

are often unaffordable, thus universities or research institutes

usually decide to use inexpensive Beowulf clusters [1] or

related approaches. Examples are [2], [3] or [4], yet most

clusters are designed to solve domain specific problems. If

they provide a generic API, they often do not include support

for cluster management, e.g. adding new nodes or updat-

ing/reconfiguring existing nodes. Additionally most Beowulf

clusters assume heterogeneous nodes or a static topology,

which is a serious restriction for partial system upgrades.

Solutions are usually implemented by using plain communi-

cation abstractions like PVM [5] or MPI [6], which provide a

simple and efficient way for distributed computing, yet these

APIs do not address generic concepts of cluster computing

(e.g. load balancing strategies, node management). Many

(domain specific) extensions for these interfaces exist, e.g.

[7](enhanced PVM load balancing) or [8](PVM over ATM

lines), which address certain aspects of cluster computation.

Often do frameworks include large dependencies to other

external libraries, which are not guaranteed to work with

future revisions.

The SCMS [9] framework addresses the management prob-

lems of Beowulf clusters and provides a practical set of

functions. Yet its purpose is solely the management, it does

not include inherent support for computation tasks. Building

upon SCMS and other frameworks, SCE [10] provides a so-

lution including support for computation tasks by using MPI.

Yet, a rigorous analysis of its structure and implementation

(e.g. of the low-level network communication with respect

to current technologies) is ommited.

We aim to address the problems of Beowulf based com-

putation by providing an integrated but modular framework

which not only enables one to rapidly deploy and manage

Beowulf clusters but also scales well for huge systems

(>1000 nodes). Additionally our framework includes sup-

port for OpenCL based computation which alongside our

support for dynamic heterogeneous topologies provides the

basis for a flexible system structure.

Section II will outline the general structure of our system,

while the critical aspect of network communication will be

addressed in section III. The previously mentioned dynamic

topologies will be explained in section IV. We will conclude

this paper with the description of the IGOR cluster which

was utilized in the APFel research project [11] for distributed

and GPU-accelerated people detection. Additionally we will

elaborate on the results which were obtained by using Sim-

pleHydra on the aforementioned cluster, thus demonstrating

the frameworks potential.

II. A COARSE LOOK ON THE STRUCTURE

We begin by describing the frameworks modular structure

which incorporates the largest modules:

169

CINTI 2014 • 15th IEEE International Symposium on Computational Intelligence and Informatics • 19–21 November, 2014 • Budapest, Hungary

978-1-4799-5338-7/14/$31.00 ©2014 IEEE

Core

D
a
ta

b
a
s
e

H
a
rd

w
a
re

Image processingNetworkM
a
c
h

in
e
 l
e
a
rn

in
g

OCL Image processingClusterX
M

L

V
is

u
la

li
z
a
ti

o
n

O
p
e
n
C

V

UnitTests

OpenCL

OCL Machine learning

Figure 1. The structure of SimpleHydra, each block represents a module,
all modules beneath another module are required for its functionality

• Core

• Network

• Cluster

The ’Core’-module provides all basic data structures and

management functions for the remaining elements, e.g.

filesystem support, IPC (inter-process communication) sup-

port, a thread management system, time measurement com-

ponents, serialization facilities and others. All fundamental

communication methods are provided by the ’Network’-

module, due to its size and complexity we will describe

its structure more detailed in section III. The ’Cluster’-

module contains high level management routines which

enable developers to quickly deploy canonical (i.e. frame-

work provided) management clients and servers for a cluster

infrastructure.

In addition to these modules, SimpleHydra (SH) provides a

wide functional variety in the areas:

• data exchange (e.g. Matlab interface, XML support

for basic XML access and configuration files, MySQL

database connectivity)

• image processing (e.g. elementary image manipulation,

OpenCL based high performance object detection)

• machine learning (e.g. LIBSVM wrapper, generic and

adaptive neural networks with OpenCL support)

• hardware support for video input devices (e.g. V4L

devices, AVT cameras)

• data visualization (e.g. video streams, images or func-

tions)

Fig. 1 illustrates the described components and shows their

dependencies, i.e. a module requires the components it

stands on. The environment requirements in terms of soft-

and hardware are very puristic throughout the different mod-

ules. Due to efficiency (e.g. threading, time measurement) /

cost (e.g. licenses) considerations we decided to implement

the framework only for Linux/Unix systems. SH provides

interfaces to proprietary libraries, e.g. Matlab, yet this is

a requirement solely for the corresponding module (e.g.

’Matlab’-module). Due to the frameworks size, we decided

to utilize CMake and bash scripts for the build chain. This

allows a fast creation of customized build configurations,

e.g. for a small embedded system like a RaspberryPie one

could only build the modules ’Core’ and ’Network’. The

minimal software requirements are a Linux/Unix system, a

C++ compiler, the C++ standard library and CMake. There

are no hardware restrictions. In order to keep things brief, we

just list the external dependencies for each module (’<o>’

indicates it as being optional):

• Core(<o>libz, libpthread)

• Network

• Cluster

• Database (libmysql || libmariadbclient, libboost regex)

• Hardware (libVimbaCPP, libVimbaC)

• OpenCL (libOpenCL)

• Matlab (libmat)

• ImageProcessing (libpng, libjpeg)

• OpenCLImageProcessing

• OpenCLMachineLearning

• MachineLearning (libSVM)

• XML (libxml2)

• Visualization (Qt5, libcustomplot, qwt)

• UnitTests

The reason for such a sparse amount of small external

libraries lies in the fact, that SH implements many data

structures and elementary control mechanisms from scratch.

This is needed to provide system-local thread safety while

keeping the data access to primitive data containers (e.g.

linked lists) fast. The framework incorporates a build chain

which generates release and debug make scripts for static

and shared libraries (module wise). In addition to these

libraries one can build an executable containing the unit

tests.

III. NETWORK PROTOCOL AND COMMUNICATION

FACILITIES

One of the most critical aspects in building a cluster is

the communication bandwidth and latency between nodes.

It is not only a question of choosing an appropriate physical

interface but also the communication protocol. Professional

high performance systems often use the Infiniband interface

which provides a 2.5GBs link [12] and drive their data

with TCP. Infiniband also has a much smaller latency of

≈ 1.7µs compared to GigE ethernet ≈ 48µs [13]. Although

one might be tempted to use this interface for IPC, it does

come with high hardware costs (NICs, switches etc.). Thus

for small research institutes GigE (available on almost any

modern computer) represents a cost efficient alternative to

aforementioned HPC systems.

The concept of Beowulf clusters exists since 1995 [1] and

initially described a set of Ethernet-connected workstations,

whose communication based on a tocken exchange via

UDP. Yet UDP is a connectionless IP based method to

transmit data, i.e. one does not have congestion control,

receive control, ordering of packet fragments or reachability

information about the communication partner. For simple

domain specific Beowulf clusters the choice of using UDP

might be well founded, e.g. small and sparsely exchanged

tokens under the restriction of largely available network /

D. Malysiak and U. Handmann • An Efficient Framework for Distributed Computing in Heterogeneous Beowulf Clusters…

170

...

accept

Figure 2. The concept of binned worker threads; one thread tI handles the
incoming connection requests crl, creates the connection cj and assigns it
to an appropriate worker thread tw,i (bin)

node capacities. But for a generic approach, e.g. taking the

management and control of the cluster into account, with

respect to unknown fields of applications as well as hetero-

geneous hardware configurations, the control requirements

for network communication will converge to the feature set

of TCP.

Thus we decided to implement the communication via

connection-based TCP, the reasons for this choice will

become clearer when we discuss the management feature

set of SH. It should be mentioned that the SH framework

does also utilize UDP for e.g. dynamic cluster topologies

and is not restricted to TCP based communication, yet it

does not provide high communication facilities with UDP.

A. SH communication

Before discussing the internal mechanism we would like

to point out that even though we will carry the described

communication facilities throughout the remaining paper,

SH provides a generic API which allows developers to

change/ implement existing or new communication protocols

down to the choice of sockets (e.g. as far as to choose packet

sockets).

Communication, in management or computation relevant

tasks, uses TCP payloads p of the form

p = [h|d] (1)

where h is 4 bytes long and contains the size in bytes of the

actual data d. Thus the shortest communication beacon will

be 4 bytes large. In order to avoid synchronization problems

or race conditions during heavy data exchanges, we define

each data transmission to be of a request-response form.

B. Worker threads

When it comes to socket communication under

Linux/Unix systems the usual naive way of handling

incoming connections is to start a single thread for each

one of them. This approach is infeasible for large scale

servers as it will clog the system with management

overhead. Thus in large server applications the concept of

binned worker threads is applied, this is depicted in Fig. 2

Our system allocates a thread pool of n worker threads tw,i

and starts a single connection handling thread tI . Every

connection request will be processed by tI and delegated to

a fitting thread tw,i. The term ’fitting’ already indicates that

the choice of i is not arbitrary, the simplest strategy would

be an even distribution among the workers. Due to time

restriction we only implemented this approach, i.e. each

single worker can handle up to m connections, in case of

nm existing connections every incoming connection will be

dropped. A more advanced way would consider the current

load of the worker threads and e.g. choose the one with the

lowest value.

C. Efficient socket handling

The Linux kernel provides different mechanisms for

accessing data in a socket (or checking for available data),

namely select, poll and epoll. A call to select is the most

basic way of checking for available data, it informs the

kernel about all file descriptors (i.e. socket descriptors) it

would like to check for new events. This approach does not

scale well with a growing number of open file descriptors.

The same holds for poll which differs to select only in

the number of maximal file descriptors (i.e. it has no

fundamental limit compared to the bit mask approach of

select [14]). The epoll function removes this drawback as

it only considers the active file descriptors, i.e. it does not

require to provide the kernel with a list of desired elements.

Both approaches were thoroughly analyzed in [15], who

showed that epoll exhibits a measurable performance gain

of up to 79% for sparse connection activity. Thus we

decided to utilize edge-triggered epoll in our framework.

SimpleHydra’s worker threads use so-called frame

assemblers, in order to explain those we must begin with

the problem they solve. For the sake of simplicity assume

that only a single worker thread tw,0 exists and handles

m connections. For each of these m connections tw,0

will have to assemble the corresponding data streams, as

they may arrive in (ordered) fragments. Furthermore tw,0

must apply the desired action (e.g. a callback) to the data

streams payload. Thus each connection cj is assigned a

single frame assembler aj which handles the logic behind

the assembling (buffer management and construction) as

well as the interpretation of the data. The interpretation is

done via frame handlers fhj which are an integral part of

each frame assembler (one per assembler).

The process structure of socket management within a

worker thread is illustrated through alg. 1. Yet another

problem arises in the context of binned worker threads. Let

us assume tw,0 processes the low-level socket descriptor

sdj of cj , how does he find aj efficiently in order to deliver

the received data to it? In order to solve this we applied

an unordered hash list (O(log(n))) holding the tuples

(sdj , aj) with sdj being the key. One should note that

this problem could be solved differently e.g. by including

a connection id into the header h, thus the worker thread

could up look the frame assembler in a linear array. Yet this

171

CINTI 2014 • 15th IEEE International Symposium on Computational Intelligence and Informatics • 19–21 November, 2014 • Budapest, Hungary

would require a management of available slots in the array.

Using the socket descriptor as a key for the linear array

itself is infeasible due to its numerical range (4/8 bytes),

i.e. this would restrict the array to be continuously growing

with each new connection (especially critical for the case

of very frequent closed and reopened connections over

a long time period), i.e. we would gain O(1) worst-case

lookup time for the cost of a limited system runtime due to

a finite memory amount. This dilemma can not be avoided

for situations with a variable amount of non-persistent

connections.

Algorithm 1 Worker thread tw,i socket management

1: while worker is active do

2: (num, event) =getActiveConnections; → epoll

3: for i=0; num - 1 do → determine request type

4: if event[i].req==”disconnect” then

5: find and delete connection from container;

6: end if

7: if event[i].req==”connect” then

8: create and add connection to container;

9: end if

10: if event[i].req==”data” then

11: find and call assembler aj ;

12: end if

13: end for

14: end while

Each worker thread contains a private epoll system which

is used to observe the socket descriptors of all assigned

connections. Thus we can summarize the average time

complexity Tsock of our approach as follows (for the sake

of simplicity we chose intuitive index names).

Lemma 1. Let acti be the number of active connections

in tw,i with i ∈ [0, n − 1] and acti ∈ [1,m]. Furthermore

let D be a data structure, capable of holding integer values,

with functions Dget, Dadd, Ddel and corresponding average

complexity sets Oget(g(k)), Oadd(a(k)), Odel(d(k)) for k
contained elements. Then the average time complexity for a

single iteration of tw,i is

Tsock,i = O(E(acti)f(k)) (2)

with f being a function from the largest of the mentioned

complexity sets.

Furthermore the complete average complexity (for a single

parallel iteration of all worker threads) is given by

Tsock = O(max
i

(E(acti))f(k)) (3)

Proof: We have to distinguish two cases, firstly the

case of E(acti) = 0, where the above statements obviously

hold. Secondly the more interesting case of E(acti) > 0.

First one has to observe that E(acti) can be splitted into

E(disi) +E(newi) +E(geti), where the expectancy values

refer to the case of disconnect requests, new connections

and existing connections, respectively. Furthermore there

exist factors α, β, γ with αE(acti) = E(disi) etc. (e.g.

β = (E(deli) − E(geti))/E(acti)). Every worker has to

retrieve the active sockets, this can be done in constant

time due to preallocated kernel structures (or in E(acti)
steps from a rigorous point of view). After the descriptors

have been retrieved one must process each one of them

(i.e. E(acti) descriptors), they may inform the program

over disconnections, new connections or data for existing

connections. For each request type one must execute data

structure routines, i.e. Ddel, Dget, Dadd, respectively. Let

g′ ∈ Oget(g(k)), a
′ ∈ Oadd(a(k)), d

′ ∈ Odel(d(k)) be

arbitrary functions. We can summarize the complexity for

the processing of all requests by

O(E(acti)(αd
′ + βa′ + γg′)) (4)

which is dominated by the function with the largest asymp-

totic behaviour, i.e. f . Thus we obtain the complexity for a

single iteration and for multiple parallel iterations (as n is

constant).

On the basis of lemma 1 it is simple to conduct further

runtime analysis depending on the assumed distribution of

acti and the utilized data structure D. The extension for

inclusion of high level functions for each request type can

be done by adding their complexity to the complexity of

the corresponding datastructure routines (i.e. d, a, g). One

can also deduct that for a constant time complexity within

the described threading concept, all of the datastructures

operations must be able to finish in constant average time.

D. Memory management and space efficiency

Apart from the operating systems send and receive buffers,

two additional buffers are required in which an assembler

aj can iteratively construct the outgoing and incoming data

streams. In our system each aj constructs an appropriate re-

ceive buffer for every incoming datastream, thus we allocate

memory only if it is required (depicted on the left image

in Fig. 3). Regarding the outgoing data we have chosen

a different approach. The worker thread contains a single

transmit buffer which is shared among the managed sockets.

Each socket will either send all of his queued data or fail,

under this restriction we can reduce the amount of required

memory significantly (see the right image in Fig.3). Yet this

strategy can not be applied for incoming (fragmented) data

streams, as we have to store incomplete data streams over

time until all fragments have been received.

The required buffer size for an incoming data stream is

determined once the first 4 bytes (i.e. the header) have

been received. Additionally the send process only considers

the existing data in the shared output buffer, .i.e. it does

D. Malysiak and U. Handmann • An Efficient Framework for Distributed Computing in Heterogeneous Beowulf Clusters…

172

1.) receive data

2.) construct frame

3.) call frame handler

with local bu�er

4.) free the bu�er

2.) write data

1.) create data

3.) send until

success or error

Figure 3. Left side: tw,i receives a data fragment within an iteration and
directs them to the appropriate assembler aj , which stores it in a local buffer
and continues with frane reconstruction. Once a frame has been completely
received, the framehandler fhj will commence the interpretation of the
payload. Right side: the frame handler fhj attempts to send data over
sdj , first the data is copied into the worker threads shared output buffer,
afterwards the worker thread attempts send all data contained in the buffer
(i.e. only the existing payload). The colored rectangles represent different
contexts.

not send all allocated buffer bytes. The output buffer size

is determined during runtime by analyzing certain system

attributes.

As mentioned before our protocol uses a simple request-

response scheme, this simplifies the logic behind frame

assembling. Through the use of TCP we receive data frag-

ments in correct order, thus the assemble process is a simple

concatenation of bytes. The process of frame construction is

depicted in alg. 2, each computational step can be done in

O(1). The complexity is mainly determined by the call to

fhj , which can commence arbitrary actions with respect to

the received payload.

Thus we can summarize the complexity of our communi-

Algorithm 2 Frame assembling in aj

Require: data fragment d
1: [static init] buffer = ∅; bytes = 0; payload size = 0;

2: if bytes < 4 then

3: append d to buffer;

4: bytes += sizeof(d);

5: return

6: end if

7: if bytes ≥ 4 ∧ payload size == 0 then

8: payload size = h → h=bytes[0,..,3]

9: append d to buffer;

10: bytes += sizeof(d);

11: return

12: end if

13: if payload size > 0 then

14: append d to buffer;

15: bytes += sizeof(d);

16: if bytes == payload size then

17: call fhj with buffer

18: buffer = ∅; bytes = 0; payload size = 0;

19: end if

20: return

21: end if

cation protocol with

Theorem 1. Let Ω be the average complexity set for actions

Mgmt Service

Management node

Comp. Task

Mgmt Client

Computation node

SH Unit

TCP

IPC

TCP

Direct

communication

Figure 4. The canonical network service structure of SimpleHydra, the
dashed rectangles represent different address spaces. Management of the
computation nodes is done via a TCP connection between two correspond-
ing services. These services are independent of the actual computation task
but can communicate with it either via direct addressing or IPC. The node
interaction during computation tasks is also done via TCP connections.

taken by framehandlers fhj in a given context and ω ∈ Ω.

The basic SimpleHydra network communication system, with

respect to a single (parallel) iteration of all worker threads,

exhibits a complexity of

Tcom(.) = O(max
i

(E(acti))(f(k) + w(.))) (5)

Proof: Follows directly from lemma 1 and the corre-

sponding remarks.

IV. DYNAMIC TOPOLOGIES

The communication topology of a Beowulf cluster is

star shaped, with a management node in the center which

distributes work among the available nodes (including itself).

This topology is usually assumed to be static in terms of

e.g. node count or communication interface. Additionally

it is assumed that the nodes are similar (if not identical)

configured. Yet some applications benefit from a dynamical

topology, e.g. one which allows the insertion or removal of

nodes during runtime, where the nodes may be differently

structured (e.g. powerful multi-GPU nodes).

Thus we designed our framework in a way which allows the

configuration of such clusters, furthermore we provide a low-

level API which allows not only the construction of highly

dynamic topologies but also their runtime management.

The general structure of this system is depicted in Fig.

4, where the management node executes two distinct (in-

dependent but connected) subprograms; the management

service and the computation task. The management service

is capable of e.g. keeping track of each node’s available

computation ressources, copying data onto nodes or execut-

ing arbitrary system commands. The computation task has

the responsibility of managing work distribution among the

nodes.

Each node runs the corresponding counter parts; the man-

agement client and the SH Unit. We will describe the concept

of SH Units in the next section, for now it should suffice

to consider an SH Unit as distributed workload. Similar to

the management node, the subprograms on a computation

node are independent but connected. The motivation for

173

CINTI 2014 • 15th IEEE International Symposium on Computational Intelligence and Informatics • 19–21 November, 2014 • Budapest, Hungary

this design was to keep the cluster stability as high as

possible. Even if an SH Unit fails, e.g. enters an endless

loop, the management node can still use the connection to

the management client to stop the Unit through the node’s

operating system.

The management service and computation task are being ex-

ecuted in the same system process (but in separate threads).

For the sake of simplicity let us assume that each node

already runs the management client. First the management

service will be started, it will find all available nodes on the

network (predefined or dynamic, details in next subsection)

and setup a connection to them (i.e. the running clients).

Afterwards it will distribute SH Units among them and start

the computation task. Each SH Unit will then connect to the

computation task and the actual work may commence.

We point out that the computation nodes establish the con-

nection, thus they have to handle only two connections (one

for management and one for computation tasks), whereas

the management node will handle its connections efficiently

via the approach described in section III.

A. Self-configuring clusters

We will now detail how the connections between nodes

are being established. Within the previously described ap-

proach one might assume that the management node carries

an initial list of all potentially available nodes. This is not

required as we designed SimpleHydra for self-configuring

clusters.

The management client contains an UDP Remote Control

Service (UDPRCS), one of its functionalities being the

ability to reply to home beacons (33 Byte large UDP

broadcasts containing information about the management

node). First the management node M will send a home

beacon, all available nodes ni may answer to it, M will wait

for a defined time and create a list N = {ni} of available

nodes. Independent of that, the nodes ni will connect to the

management service at M (the required data is extracted

from the home beacon). The management node may use N
to verify if all nodes have connected to it. Afterwards M
will use these connections to distribute data and instructions

to the nodes. Once the nodes have received all initial data

they will execute the instructions (e.g. set up a connection

to the computation task on M). This scheme is illustrated in

Fig. 5, for the sake of understanding we ommited the details

of synchronization e.g. the management client will wait until

the SH Unit has been successfully deployed. Additionally we

left out the details of network communication like response

messages.

Using the UDPRCS one can build architectures which allow

the online expansion of computational resources. Yet, this

approach works only on local subnets and thus SimpleHydra

also supports the use of static node lists. These node lists

allow the configuration of clusters in wide area networks,

i.e. the provide the possibility for grid computing.

Mgmt Service

Management node

Comp. Task

Mgmt Client

Computation node

SH Unit

1) UDP Broadcast Beacon

3.3) deploy SH Unit
3.1) start task

UDPRCS UDPRCS

2) UDP Unicast reply

3.2) send SH Unit

4) create connection

5) computation traffic

Figure 5. The process of self-configuring clusters with SimpleHydra. The
numbers inside the annotations denote the order of execution. First the
management node attempts to find all available nodes on the local subnet
via a UDP broadcast. The available nodes reply to the beacon and extract
the servers connection information (e.g. address, port) fromt it. Using this
information they establish a connection to the management server which,
once all nodes have connected, starts the computation task and sends an SH
Unit to the nodes. Once a node received the Unit, it will deploy and execute
it. The actual computation may then begin. For the sake of transparency
the synchronization details of communication have been ommited.

V. CLUSTER MANAGEMENT

One often underestimated point is the management of a

cluster, this includes tasks as setting up single nodes, keeping

track of available nodes, updating software (e.g. libraries)

on nodes and many more. For larger cluster systems (>20

nodes) these tasks create serious overhead for the admin-

istrator and introduce downtimes to the cluster. In order to

accommodate this we provide a generic function set along

with the management service, including e.g.:

• Remote shell (synchronous, asynchronous, parallel on

multiple nodes)

• File copy

• Resource querying (CPU load, free HDD space etc.)

A developer can use these functions to create solutions for

more complex tasks, e.g. update multiple nodes by copying

a script to them and using a parallel shell to execute it.

VI. WORKLOAD DISTRIBUTION PARADIGM

Let us consider the following scenario, an existing cluster

with identically configured nodes (i.e. identical soft- and

hardware) should be upgraded during runtime with one

additional node. Yet this node contains almost completely

different hard- and software (still a Linux/Unix system

though). If the workload (i.e. the data and program code)

would have been distributed as binary data, it would be

impossible to use it on the new node. In order to address

situations like this we developed the concept of SH Units.

A. SH units

An SH Unit is a datastructure u = (P , d), with P being

an arbitrary payload and d a deployment script. Technically

u has the form of a compressed archive which contains

C/C++ source files and binary data (i.e. the payload P),

the deployment script (i.e. d) usually consists of a single

’*.sh’ file. Alg. 3 illustrates the process of deployment on

the computation node.

D. Malysiak and U. Handmann • An Efficient Framework for Distributed Computing in Heterogeneous Beowulf Clusters…

174

Algorithm 3 Deployment of an SH Unit u

Require: SH unit u
1: unpack archive into temporary folder

2: execute d → e.g. compile source files and execute the

binary

The algorithm is very short as all deployment logic will

be included in the deployment script. It can execute arbitrary

commands, compiling the source files within the payload is

only one of them. It may also gather system information

and provide them to the executed binary or copy needed

files to specific locations. The only statically defined step in

the context of an SH Unit is the execution of the deployment

script, which can also be used for administrative tasks.

As mentioned in section IV the started SH Unit (i.e. the

compiled binary) can communicate with the management

service through IPC. Thus, although the Unit is started

as a new process the management service still has low-

level control over it. In order to enable rapid prototyping

we provide SH Unit / computation task templates for e.g.

map and pipe skeletons. The developer might also create

completely new tasks with ease (as our system provides a

transparent and generic class structure).

B. Load balancing

During runtime it is crucial to distribute the workload

adequately among the nodes. Factors may be power ef-

ficiency [16], memory attributes [17] or domain specific

optimizations [18], just to name a few. We do not aim to

provide implemented solutions for any of such problems,

instead our framework provides the needed infrastructure for

implementing the corresponding solutions.

The management service does not have to be completely idle

during computation, it may e.g. collect information about

the nodes. This can be done by e.g. polling all nodes with a

fixed frequency or letting the nodes themself transfer a status

report (6). The computation task may utilize this information

for an arbitrary scheduling algorithm.

VII. INNER WORKINGS OF SH

Every connected node is being assigned a unique node id

which is stored in a temporary database on the management

node. A computation task can access the contained entries

(which also include other node metadata) and e.g. decide

whether a node is capable of executing a certain operation.

The details of collecting metadata is depicted in Fig. 6, the

client c connects to M , during this process c gets assigned

a node id and additionally sends a small system report R.

R contains e.g. the number of OpenCL devices, CUDA

devices, CPU information, the amount of RAM, available

HDD space and many more. At the end of the registration

the report data is saved in a local database. A workload

scheduling algorithm can utilize this meta information for a

Mgmt Service

Management node

Mgmt Client

Computation node

1� ��t������ 	onnection

2) send �
�ee �

3) Re��� ��t� �eport

I�
CPU count

CPU inf��
RA� �� �����
G�� �ount

G�� ��f��mation

...

4) save �� i�����se

Periodic or single

updates possible

Figure 6. The simplified registration process of a new node c and the
management node M . First c establishes the connection to M , which in
turn sends a free ID (this number is removed from the pool of available
IDs until c disconnects or the registration fails). The computation node
then acknowledges this number by sending it back as an attributes of a
system report R. The management node then saves the report data in a local
database and assigns the ID to the corresponding connection. It is possbile
to update the report data periodically (i.e. c sends periodic updates) or only
per request (i.e. M requests an update from c).

Figure 7. The window system is part of the visualization module, it
contains e.g. sophisticated plot features, image viewers with annotation
functions, video viewers and cluster management tools like e.g. parallel
remote shells.

balanced distribution of tasks. It is also possible to periodi-

cally update the report information for a set of nodes (single

updates are possible as well). For the sake of understanding

we left out any timers (which are used in steps 2 and 3)

within this illustration.

The communication between management client and SH

Unit on the node side is done via IPC mechanisms. For this

and other purposes, SimpleHydra supports both, System V

and POSIX based shared memory IPC. Another application

for IPC is the libraries visualization module (see Fig. 7),

which uses shared mutexes for synchronization with the

Qt based window system. It must be noted that although

SimpleHydra provides an object oriented interface to this

window system, the system itself provides a low level

C language interface, which allows its use in native C

programs.

We will now explain how our protocol avoids race condi-

tions and synchronization problems. Let us assume (without

loss of generality) three communication parties A,B and C
are communicating with each other, A and B are separate

threads on a management node while C is a thread on a

175

CINTI 2014 • 15th IEEE International Symposium on Computational Intelligence and Informatics • 19–21 November, 2014 • Budapest, Hungary

computation node. Furthermore let A be receiving a large

file from C and B preparing to request a status report

from C. The protocol uses a sequential request-response

format, i.e. the communication tasks are queued and will

be sequentially processed. For our example this means that

while A receives data, no other communication will occur on

this connection (i.e. B will wait for A to finish). This allows

a simple and fast messsage parsing for each connection as

the receiver can be sure that he receives a coherent payload

stream, i.e. only the data from one communication context

(no interleaved fragments). Once A has received all the data,

the next enqueued communication will commence, i.e. B
will send a request to C, which in turn will respond with a

status report. It must be noted that such a connection scheme

has its drawbacks, e.g. for a connection which transfers

mostly large files, short messages will experience a great

latency. Yet in the context of Beowulf cluster computing

one usually avoids great amounts of network communication

due to the small bandwidth and high latency of ethernet,

additionally the exchanged data blocks are often small and

in similar size. Due to these reasons we implemented the

described sequential approach, yet our framework gives

the user the freedom to implement a (situation-)optimized

communication scheme.

VIII. SIMPLEHYDRA DEPLOYMENT IN A CLUSTER

In order to efficiently use our software we also optimized

the deployment in an existing infrastructure. A Beowulf

cluster makes little to no assumptions about the used

hardware ([1] refers to the computation nodes as simple

workstations), thus a corresponding framework should be

able to deal with a large variety of hardware configurations.

The most relevant hardware elements are system memory,

CPUs, GPUs, HDDs and network interfaces, which our

framework handles in a generic manner. Many frameworks

incorporate similar functionality but achieve it through the

use of external libraries, which often are restricted to certain

hard- or software configurations and can change their APIs

anytime (which forces one to adapt the framework).

In order to circumvent these problems and restrictions we

designed our framework from scratch with only a minimal

amount of external dependencies (the biggest being the

Qt framework for the visualization module). This makes

deployment in a network environment very easy, for the

basic distribution of workloads one only needs to copy

a small (prebuilt) client demon to the workstation (if no

prebuilt demon is available, one has to compile it either on

the workstation or with a fitting crosscompiler). No further

configuration is required, especially no external libraries

besides the C/C++ standard library. This deployment can

be archived via e.g. a small shell script, the client demon

itself is very puristic and effectively consumes no system

resources. Once this demon has started, the workstation

becomes an available computation node. It should be noted

that this demon can reside on the workstation after the

computation tasks finished, thus the workstation will be

made available for e.g. tasks of another management node.

The demon also determines the available system features,

e.g. OpenCL, CUDA, memory amount etc., yet it is also

possible to configure it with a static configuration file which

defines the available services. These static configuration files

are useful in the case of strongly varying or special envi-

ronments, which can make it difficult to reliably determine

certain system features.

IX. APPLICATION

In order to test and demonstrate the potential of Simple-

Hydra we constructed a Beowulf cluster IGOR (Intelligent

GPU based Object Recognizer) and utilized it within the

APFel research project. Throughout this section we will

describe IGORs system structure, the deployed tasks and

discuss the results.

A. The Beowulf cluster IGOR

IGOR consists of 15 nodes in total, which are equipped

as follows:

• 1 nodes: Intel i7 4770, 3x Radeon 7990, 64GB RAM,

12TB HDD (3 disks)

• 6 nodes: Intel i7 4770, 1x Radeon 7970, 16GB RAM,

1TB HDD

• 2 nodes: Intel i7 4770, 1x Radeon R9 290x, 16GB

RAM, 1TB HDD

• 2 nodes: Intel i7 4770, 1x Geforce GTX780-Ti, 16GB

RAM, 1TB HDD

• 2 nodes: Intel i7 4770, 2x Radeon R9 290x, 64GB

RAM, 8TB HDD (2 disks)

• 1 nodes: Intel i7 4770, 3x Geforce GTX780-Ti, 64GB

RAM, 8TB HDD (2 disks)

• 1 node: Intel i7 4770, 16GB RAM, 1TB HDD

The last node was used as a dedicated management node,

i.e. it did not participate in the execution of SH Units (Fig.

8 shows the two different types of nodes). Thus in total

IGOR features 56 x64 CPU-cores with 3.6GHz, 368GB

of system memory and 55872 GPU shaders, with a total

of ≈ 107 TFlops (synthetic, FP32 GPU) and 2.38 TFlops

(synthetic, FP32 CPU). Except for the identical CPU the

nodes exhibit different amounts of RAM, different GPU

counts and types (this implies different local tool chains and

interfaces) and different amounts of HDD storage. The nodes

were interconnected via a dedicated GigE switch and used

different versions of ArchLinux.

B. The APFel person detection system

Our detection system (Fig 9) is described in [11] with

more detail, for this paper we will give a short summary

and discuss our testing methods.

Two problem instances have to be distinguished; the clas-

sifier training and the case of detection tasks.

D. Malysiak and U. Handmann • An Efficient Framework for Distributed Computing in Heterogeneous Beowulf Clusters…

176

Figure 8. The two node types used in IGOR. The left picture shows
very compact mini-ITX case with one discrete GPU, 16GB RAM and one
HDD of 1TB. The right side depicts a large ATX tower with 64GB RAM,
multiple GPUs and HDDs (8TB).

...

Video database 1

Client

C ! " Cam N

Video database N

...

Detector 1

M # $%!ent node

Detector m

Figure 9. The detection system of the APFel project. The client obtains
images from different video databases, he uses the management node of the
Beowulf cluster as an abstraction proxy to the collected computation power
of all m GPUs (which are distributed over n) nodes. The management node
receives detection requests which also contain the corresponding image, it
delegates these requests to a node with an available GPU, receives the
results and forwards them to the client.

The detection algorithm utilizes a linear GPU-based support

vector machine, which was trained with up to 1600 elements

of dimension 3565. In order to find the optimal training

parameters we used a gridsearch with the crossvalidation

error as an objective function. We splitted the search grid

into equally sized tiles and distributed them among the nodes

which in turn executed the corresponding grid search. The

management node collected the results and extracted the best

parameters.

Regarding the case of detection tasks we employed a sim-

ilar strategy. As depicted in Fig. 9, the management node

receives detection requests, finds a node capable of han-

dling them and delegates the task accordingly. The system

processes multiple parallel videostreams with 10 fps.

C. Results

The most time consuming task during the construction

of IGOR was the configuration of the different node types,

as they contained either AMD or NVidia GPUs we needed

to configure different tool chains. In order to speed up this

process we utilized HDD image tools. For a more homoge-

neous hardware configuration a distributed filesystem might

be better suited.

Our highly optimized GPU-based HOG-algorithm [11],[19]

executes the detection on a single image in ≈ 60ms (pro-

cessing ≈ 14GB during this time). The detection tasks were

deployed among the nodes in a first come - first serve

strategy, i.e. the task was assigned to the first found node

with an unoccupied GPU. As we used our system in an

offline mode (i.e. with recorded images), we handled the

case of ’no free nodes’ by simply letting the task wait until a

CPU/GPU was available. The computing performance scaled

linearly with the cluster’s GPU count, i.e. detection times

with videostreams were reduced by a factor of 1/m with

m GPUs. The distributed gridsearch during SVM training

reduced the training time by a factor of 14, as the SVM

was trained on 14 identical CPUs in parallel. We measured

raw communication latencies between the nodes of ≈ 45µs

while transfering 1kB of management payload for a low

amount of 30 connections. These latencies have been com-

pletely masked by the (in comparison) large computation

times of ≈60ms (detection process) and ≈20s (linear SVM

gridsearch step) / ≈15m (RBF SVM gridsearch step). During

our evaluation we used a total of 8 worker threads on the

management node, i.e. 1 worker thread for the management

server and 7 for the computation tasks (as we used the

management service only for collecting the nodes system

load). We successfully tested the insertion and removal of

nodes during the clusters live operation, the whole system

was capable of handling the gained or lost capacity with

ease. Thus our system was able to process ≈345fps i.e. ≈34

parallel video streams or in terms of data volume 4.8 TB/s.

X. CONCLUSION

In this paper we present a different approach to frame-

works for cluster computing, instead of relying on existing

communication systems (e.g. MPI) we developed a new

communication structure with respect to massive scaling and

low time/space complexity. Furthermore we designed the en-

veloping framework to be as adaptable as possible, not only

to allow its use on heterogeneous hardware configurations

but also to allow developers to implement their own (maybe

completely different) components in an object-oriented way

(e.g. Map&Reduce [20] algorithms). The modular structure

and simplistic design enables its use on very basic hardware

configurations.

We have shown that our approach to network communication

scales according to the utilized datastructure’s worst time

complexity. Our implementation was tested on a small Be-

owulf cluster and showed its flexibility as well as efficiency

on a Big-Data problem. Furthermore our results showed

that with an adequate load balancing policy our framework

gives rise to a linear scaling of computation power. Yet

in order to truly assess SimpleHydras network efficiency

(in terms of latency in e.g. computation tasks with varying

communication density and a large number, e.g. >1000, of

connections), further testing is required and will be our next

step in its development process. Additionally the efficiency

relation between worker thread count and active connections

must be analyzed more precisely. Even as we only used

177

CINTI 2014 • 15th IEEE International Symposium on Computational Intelligence and Informatics • 19–21 November, 2014 • Budapest, Hungary

a low amount of connections, the system shows promising

potential regarding the communication latencies, which were

effectively masked by those of the GigE interface of ≈ 40-

50µs (i.e. they were smaller by at least a magnitude).

Although we provide yet another framework for Beowulf

clusters, SimpleHydra is self-adaptive with respect to the

utilized hardware configuration and minimizes the use of

external libraries as far as possible (i.e. only libpthread in

the basic setup for pure CPU based computation). It can

be easily deployed in an existing evironment and provides

generic management functionality for the cluster. No restric-

tions have to be made for the cluster topology and even

a highly dynamic environment (insertion and removal of

nodes during computation) is handled with ease. This is

especially useful for coping with malfunctioning nodes and

their live replacement. Beyond that we provide a rich toolbox

of visualization methods and system tools (e.g. thread pools,

time functions or system information gathering).

Even though it is still in development, we plan on making

our framework available under the GPL license type. So far

we restricted most of our tests to Linux systems, but Unix

based systems like FreeBSD will be supported as well (e.g.

using kqueue instead of epoll).

REFERENCES

[1] T. Sterling, D. J. Becker, D. Savarese, J. E. Dorband, U. A.
Ranawake, and C. V. Packer, “Beowulf: A parallel worksta-
tion for scientific computation,” in In Proceedings of the 24th
International Conference on Parallel Processing. CRC Press,
1995, pp. 11–14.

[2] J. Dubinski, R. Humble, C. Loken, U.-L. Pen, and P. Martin,
“Mckenzie: A teraflops linux beowulf cluster for computa-
tional astrophysics,” in Proc. of the 17th Annual International
Symposium on High Performance Computing Systems and
Applications, 2003.

[3] J. D. Grant, R. Dunbrack, F. J. Manion, and M. F. Ochs,
“Beoblast: distributed blast and psi-blast on a beowulf clus-
ter,” Bioinformatics, vol. 18, no. 5, pp. 765–766, 2002.

[4] J. Adams and D. Vos, “Small-college supercomputing: Build-
ing a beowulf cluster at a comprehensive college,” SIGCSE
Bull., vol. 34, no. 1, pp. 411–415, Feb. 2002. [Online].
Available: http://doi.acm.org/10.1145/563517.563498

[5] V. S. Sunderam, “Pvm: A framework for parallel distributed
computing,” Concurrency: Practice and Experience, vol. 2,
pp. 315–339, 1990.

[6] “Mpi: A message passing interface,” in Supercomputing ’93.
Proceedings, Nov 1993, pp. 878–883.

[7] C. Di Biagio, G. Pennella, E. De Paoli, R. Grandi, and
F. Giammarino, “Pvm advanced load balancing in industrial
environment,” in Parallel, Distributed, and Network-Based
Processing, 2006. PDP 2006. 14th Euromicro International
Conference on, Feb 2006, pp. 5 pp.–.

[8] C. Di Napoli, M. Giordano, M. Furnari, and F. Vitobello,
“Pvm application-level tuning over atm,” in Parallel and
Distributed Processing, 2000. Proceedings. 8th Euromicro
Workshop on, 2000, pp. 391–397.

[9] P. Uthayopas, S. Paisitbenchapol, T. Angskun, and J. Ma-
neesilp, “System management framework and tools for be-
owulf cluster,” in High Performance Computing in the Asia-
Pacific Region, 2000. Proceedings. The Fourth International

Conference/Exhibition on, vol. 2, May 2000, pp. 935–940
vol.2.

[10] P. Uthayopas, S. Phatanapherom, T. Angskun, and S. Sripray-
oonsakul, “Sce: A fully integrated software tool for beowulf
cluster system,” in Proceedings of Linux Clusters: the HPC
Revolution. Citeseer, 2001, pp. 25–27.

[11] S. Hommel, D. Malysiak, and U. Handmann, “Model of
human clothes based on saliency maps,” in Computational
Intelligence and Informatics (CINTI), 2013 IEEE 14th Inter-
national Symposium on, Nov 2013, pp. 551–556.

[12] H. Jin, High Performance Mass Storage and Parallel I/O:
Technologies and Applications, 1st ed., R. Buyya and
T. Cortes, Eds. New York, NY, USA: John Wiley & Sons,
Inc., 2001.

[13] H. A. Council, “Interconnect Analysis: 10GigE and In-
finiBand in High Performance Computing,” HPC Advisory
Council, Tech. Rep., 2009.

[14] W. R. Stevens, UNIX Network Programming: Networking
APIs: Sockets and XTI, 2nd ed. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 1997.

[15] L. Gammo, T. Brecht, A. Shukla, and D. Pariag, “Comparing
and evaluating epoll, select, and poll event mechanisms,” in
In Proceedings of 6th Annual Linux Symposium, 2004.

[16] L. Wang and Y. Lu, “Power-efficient workload distribution for
virtualized server clusters,” in High Performance Computing
(HiPC), 2010 International Conference on, Dec 2010, pp. 1–
10.

[17] T.-Y. Liang, Y.-T. Liu, C.-K. Shieh, and C.-Y. Wu, “A new
approach to distribute program workload on software dsm
clusters,” in Parallel Architectures, Algorithms and Networks,
2004. Proceedings. 7th International Symposium on, May
2004, pp. 201–206.

[18] L. Cherkasova and M. Karlsson, “Scalable web server clus-
ter design with workload-aware request distribution strategy
ward,” in Advanced Issues of E-Commerce and Web-Based
Information Systems, WECWIS 2001, Third International
Workshop on., 2001, pp. 212–221.

[19] D. Malysiak and U. Handmann, “An algorithmic skeleton for
massively parallelized mean shift computation with applica-
tions to gpu architectures,” in Computational Intelligence and
Informatics (CINTI), 2014 IEEE 15th International Sympo-
sium on, Nov 2014.

[20] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

D. Malysiak and U. Handmann • An Efficient Framework for Distributed Computing in Heterogeneous Beowulf Clusters…

178

