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Abstract— Behavior planning of a vehicle in real-world

traffic is a difficult problem. Complex systems have to be

build to accomplish the projection of tasks, environmental

constraints, and purposes of the driver to the dynamics of

two controlled variables: steering angle and velocity. This

paper comprises two parts. First, the behavior planning

for the task of intelligent cruise control is proposed. The

controlled variables are determined by evaluating the dy-

namics of two one-dimensional neural fields. The informa-

tion concerning the actual situation and driver preferences

is coupled additively into the field. Second, the parame-

ters of the dynamics for the steering angle are adjusted by

a state-of-the-art evolution strategy in order to achieve a

smooth, comfortable trajectory. The behavior of the vehi-

cle is successfully controlled by the neural field dynamics in

the testbed of a simulation environment.

Keywords— Neural Field Dynamics, Driver Assistance,

Evolutionary Optimization

I. Introduction

DRIVER ASSISTANCE SYSTEMS have to support
the driver of a vehicle in his actions. For this purpose,

the generated behavior-advice or action is determined by
the actual task, safety- and comfort-considerations. Those
constraints combined with information about the environ-
ment build the basis of the behavior planning of a driver
assistance system. The information about the environment
is obtained from sensor data, knowledge, and integration
over time, as shown in [1], [2].

The behavior planning is a complex task, as the desired
action (e.g., overtaking, lane-change) has to be made up
of a set of basic behaviors (e.g., tracking of a leader, driv-
ing backwards) or, if no adequate basic behavior is known
in advance, by calculating a dynamic transition of the con-
trolled variables. A method for behavior planning based on
scene information using an expert system was given in [4].
A fuzzy-control-system controlling the velocity of a vehicle
using radar-data was presented in [5]. A flexible archi-
tecture for driver assistance was developed in [3], where a
modularization of the architecture was proposed that al-
lows the incorporation of the presented behavior planning.

In the presented driver assistance system the dynamics
for behavior planning are formulated in the coordinates of
the vehicle’s controlled variables, which are the steering
angle and the velocity. An intelligent vision system using
these controlled variables was presented in [8]. In that
paper a traffic analysis system for autonomous driving in
urban environment was presented.

In this article, we describe a behavior planning for cruise
control based on “neural field dynamics”. Neural fields
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have been used in driver assistance systems in [6] for the
first time, but have already proven to be beneficial in con-
trolling an autonomous robot in office environments [7]. In
our application the state of the neural field characterizes a
distribution of preferences for values of the controlled vari-
ables. Information supporting different values is coupled
additively into the field and is temporally and spatially in-
tegrated.

The parameters of neural field dynamics can be adjusted
according to certain goals. We give an example of how
to adjust these parameters by means of evolutionary com-
putation. An elaborated evolution strategy is applied to
adjust the parameters of a neural field that is involved in
controlling a vehicle during lane changes. The goal of the
optimization is to achieve a smooth trajectory of the vehi-
cle when changing the lateral position.

The paper is structured into a section motivating the us-
age of neural fields for behavior planning, followed by a sec-
tion presenting the field theory of a neural field proposed in
[9]. One-dimensional neural fields designed by Amari build
the basis of the field dynamics controlling steering angle
and velocity of the vehicle. Then the generation of input
data is introduced. The definition of input data in terms
of field variables, the field dynamics, and the extraction of
information out of the field excitation are described in the
consequent section. Afterwards results for a driving situ-
ation are presented. Subsequently the optimization of the
parameters of the dynamics for a lane change is shown.

II. Behavior Planning

The term behavior planning comprises a variety of ac-
tions to be performed in dependence on the considered time
scale. E.g., the action of driving from point A to point B is
defined on a larger time scale than the action of changing
the actual steering angle by a fraction of a degree. To be
able to perform an effective behavior planning according
to the actual task the correct time scale has to be chosen
or a hierarchy of time scales representing different levels of
behavior has to be taken into account (e.g., driving from
point A to point B, driving in urban traffic, overtaking, or
stopping the vehicle).

In our paper we consider the shortest time-scale for ef-
fective control of a vehicle: The time-scale on which the
steering angle and the velocity are controlled. This control
is influenced by the task of cruise control changing on a
longer time-scale. Cruise control is a behavior based on
the task of following a leading vehicle regarding security
and comfort considerations. The control of the steering
angle results in a smooth trajectory, which does not coin-



cide completely with the trajectory of the leader, because
that could lead to cutting curves. Also the steering angle
may differ completely from the leading vehicle’s steering
angle in case of acute danger like a car cutting into the
actual lane. For the velocity similar considerations hold:
The velocity is supposed to change smoothly according to
the velocity of the leader. Only dangerous situations are
supposed to result in an abrupt reduction of velocity.

The choice of neural fields for the dynamics of the con-
trolled variables was based on several reasons.

1. The activity of proper designed fields can result in a
single-peak solution which results in the decision for only
one value of velocity and steering angle.

2. The tendency to produce a multi-peak solution can
be taken as reliability-value of the actual decision (which
might result in a switch-off of the driver assistance system).

3. Different kinds of information can be coded as pre-
activation or stimulus to influence the field variable. E.g.,
object- and lane-information, traffic-rules and other knowl-
edge can be coded additively into the stimulus-signal.

4. In any case, the dynamic system can only vary on its
time scale, so a smooth change of the field-variable is
achieved.

5. The smoothness of the solution can be controlled by the
field input, so information affording an abrupt change can
be directly coded into the action to be taken.

In the following section the applied field type is described.

III. Neural Field Theory

Neural fields are nonlinear dynamic systems. Originally
they were introduced as models of the neurophysiology of
cortical processes [9]. The dynamic properties of this ap-
proach have been examined extensively, so the approach
applied in our paper is described shortly.

The field equation of a one-dimensional neural field is
given by

τ u̇(z, t) = −u(z, t) + h + S(z, t)

+

∫
Γ

w(z, z′)ϕ(u(z′, t))dz′ , (1)

where u(z, t) is the field excitation at time t (t ≥ 0) at the
position z ∈ R. The position z characterizes the position
of the field-site relative to a reference position z = 0. The
temporal derivative of the excitation is defined by

u̇(z, t) =
∂u(z, t)

∂t
.

The excitation u(z, t) of the field varies with the time con-
stant τ with τ ∈ R

+. By means of the parameter h a con-
stant pre-activation of the field is achieved. The stimulus
S(z, t) ∈ R represents the input of the field which is depen-
dent on the field position and varies with time. A nonlinear
interaction between the excitation u(z) of one field-site at
position z and the excitation of its neighboring field-sites

at positions z′ is achieved by the convolution of an interac-
tion kernel w(z, z′) = w(z − z′) and a nonlinear activation
function ϕ(u(z′, t)). The integration is performed over the
set Γ of all field-sites. The equilibrium solutions

lim
t→∞

u(z) with Ṡ(z, t) = const. ∀t > t0

for the applied fields in case of negative h are divided into
three categories [9].

1. ∅-solution, if u(z, t) ≤ 0 ∀z ∈ Γ

2. ∞-solution, if u(z, t) > 0 ∀z ∈ Γ

3. a-solutions (local excitation > 0)

If only one a-solution exists the solution is called a single-
peak or mono-modal solution. In case of a driver assistance
task a single-peak solution is favorable as only one value
for each control variable is desired at one time step.

The type of solution depends on the stimulus, the pre-
activation h, and the interaction-kernel w(z). According to
[9] the correct choice of the parameters of the field equation
enables the existence of a single-peak solution.

The main advantage of the Amari-field is the additive
composition of the stimulus. The field can be stimulated
starting with less information, which can be additively
broadened as more relevant information is obtained and
is formulated in terms of the field-variable.

The data for the field stimulus have to be coded ade-
quately with respect to the effect they are supposed to have
on the field activation (e.g., negative values for inhibition
of regions, positive values for excitation). The next section
deals with environmental data sensed by the observing ve-
hicle which determine the input stimulus.

IV. Input Data

The behavior of a vehicle is controlled according to the
information obtained from the environment by sensors and
according to knowledge (e.g., the state of the vehicle like
steering angle and velocity, or the actual task, e.g., lane-
change) and global information (e.g., evaluated GPS-data).
This information has to be interpreted according to posi-
tion, movement direction and relative velocity of relevant
objects. Relevant objects are characterized by the grade of
influence they have on the vehicle and by the actual task.
Relevant objects can be other road users as well as traffic
signs, elements of the landscape or the lane itself.

For a good behavior planning several sceneries contain-
ing different constellations of objects in position and time
have to be tested. Especially critical situations with high
efforts on the system are of interest. Those critical sit-
uations typically might endanger other road users or the
vehicle itself. For safety reasons those situations cannot
be tested on real roads without extensively examining the
system before. For this purpose a simulation environment
has been developed. In this environment the performance
of the driver assistance system can be evaluated in criti-
cal situations without any danger to the environment. The
simulation environment (e.g., fig. 1) produces sensor data



(a) (b)

Fig. 1. Simulated sensor data for a traffic-scene of a right curved
road with parking vehicles on the right. Driving direction of
the observing (black) and of the leading vehicle is from left to
right. (a) bird’s-eye view of the scene (b) visual sensor with
an opening angle of 90.0◦

for different sensors based on the defined situation. The
behavior of objects is defined in world coordinates for the
simulated scenery. The actions of the observing vehicle
are determined by its initial condition and the controlled
variables determined by the driver assistance system. A
bird’s-eye view can be provided for a better overview (e.g.,
fig. 1(a)). In this scene the observing vehicle (black) drives
with high speed on a two lane road with parking vehicles
on the right. It follows the initially slower vehicle moving
in front in the same lane. One of several simulated sensor
results of the scene is shown in fig. 1(b). A visual sensor is
assumed to be fixed at the rear view mirror of the vehicle
being directed in driving direction (forward view).

The generated simulation data are interpreted accord-
ing to the information needed for behavior planning. The
information has to be formulated in terms of “position”-
information, at which the input of the field is generated, of
an stimulus-amplitude coding the grade of influence on the
field activation and of the variance determining the influ-
ence over a group of neighboring field elements. For the be-
havior planning two one-dimensional neural fields which are
loosely coupled are applied. The “position”-information of
the first field is the relative steering angle Ψ (relative to
the actual vehicle direction, fig. 2), for the second field it
is the relative velocity ∆v (relative to the actual observer
velocity). The grade of influence of the sensor information
is related to the relevance of the object which is dependent
on the Euclidean distance to the object, the angle Ψobj

towards the object and its relative speed ∆vobj . The po-
sition and the size of the object are formulated in polar
coordinates.

Based on the determined data and evaluating the lane-
information given by the simulation the stimuli for the neu-
ral fields are generated based on the task of cruise control.
The generation of the stimuli and the applied field dynam-
ics are described in the next section.

V. Field Dynamics

The active control of the behavior of a vehicle is limited
to the control of steering angle and velocity. In order to
determine the desired controlled variables in dependency

vobj∆

dobj

ψ
obj

x

y

Object

ψ
Observing
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Fig. 2. Observer-centered coordinate system for behavior planning.
(x, y) determines the lateral and longitudinal position in Carte-
sian coordinates, dobj and Ψ represent radial coordinates. ∆vobj

is the relative velocity of the object.

on sensor information, knowledge, trajectory requirements
and behavioral demands, two one-dimensional neural fields
as presented in section III are designed. The field positions
z have been set to Ψ and ∆v respectively to be able to di-
rectly apply the solutions generated by the field evaluation.
The excitations uΨ(Ψ) and uv(∆v) of the fields are inter-
preted as a continuous preference functions of which the
position of the maximum is the most preferred controlled
variable. For the stimulation of the fields the information
needed for the control has to be formulated in those field-
variables.

The field controlling the steering angle is influenced by
the position and velocity informations of other road users
(especially the guiding vehicle), by information describing
the free driving space and by lane information. According
to this information the stimulus is determined according to
three stimulus-functions. The functions describe

• the danger estimate O(Ψ, t) for each detected object tak-
ing into account the relative speed and the distance to the
object. The influence on the field must be inhibitory as the
collision with objects has to be avoided.

• the street-course-factor L(Ψ, t), which is determined for
one reference distance to ensure a smooth trajectory within
the actual lane. The stimulus is designed excitatory with
the center of the lane showing the greatest attraction to
the vehicle.

• the direction towards ΨD(Ψ, t) of the leader. The vehicle
is supposed to follow the leader, so the direction towards
the leader has to be an excitatory stimulus in the field.

The magnitudes of the different stimuli-functions must
be adapted to the desired effect on the neural field. In case
of cruise control a smooth trajectory following the leader
is demanded until the influence of other objects requires
different actions (collision avoidance). The stimulus of the
field for the steering angle at time t is then determined by

SΨ(Ψ, t) = −SO(Ψ, t) + SL(Ψ, t) + SψD(Ψ, t) . (2)

The field controlling the velocity is influenced by the ac-
tual velocity, the velocity to be reached according to actual
traffic rules and the relative velocity of the leader. There
are two stimuli-functions which are imposed on the neural
field:



• the stimulus SR(∆v) based on speed limits or favored
speeds is realized as a Mexican Hat function centered at
the difference between the magnitude of the actual and
of the intended velocity. The magnitude of the stimulus is
chosen such that it is dominant if the distance to the leader
is greater than security distance, otherwise the leader’s ve-
locity should dominate the change in velocity.

• the stimulus SvD(∆v) invoked by the leader is a Mex-
ican Hat function centered at the magnitude of the rela-
tive velocity of the leader. The magnitude of the stimulus
is proportional to the distance and time derivative to the
leader (e.g., if the leader has a lower velocity than the ruled
velocity, the leader will approach the observing vehicle, so
the observer-velocity has to be reduced proportional to the
change of distance to avoid a collision).

Both stimuli are supposed to have excitatory influence on
the field excitation because each velocity is supposed to
attract the field. The change in velocity, ∆v, is determined
as a result of the field dynamics, where the position of the
maximum represents the advised change in velocity. The
stimulus of the velocity field is build additively

Sv(∆v, t) = SR(∆v, t) + SvD(∆v, t) . (3)

The field equation for both neural fields are given by the
formulation of the Amari-equation (eq. 1)

τΨu̇Ψ(Ψ, t) = −uΨ(Ψ, t) + hΨ + SΨ(Ψ, t)

+

∫
ΓΨ

wΨ(Ψ, Ψ′)ϕΨ(u(Ψ′, t))dΨ′

and

τvu̇v(∆v, t) = −uv(∆v, t) + hv + Sv(∆v, t)

+

∫
Γv

wv(∆v, ∆v′)ϕv(u(∆v′, t))d∆v′.

The time constants τΨ and τv are chosen according to the
time scale on which the field is supposed to react on the
stimulus. The stimuli are determined according to eqs. 2
and 3. Both interaction kernels wΨ(Ψ, Ψ′) and wv(∆v, ∆v′)
are realized as Mexican Hat functions. As nonlinearities
ϕΨ(Ψ, t) and ϕv(v, t) tanh-functions shifted to the range
[0, 1] are used. The convolution is performed over the set
ΓΨ and Γv of the field-sites respectively.

The evaluation of the field-excitation is performed by
determining the maximum position for each field.

To examine the behavior of the designed cruise control
different traffic scenes were generated by the simulation
program. The parameters of the field-equations and the
stimuli are determined by evaluating the reaction of the
system for a variety of scenes. The results for one sim-
ulated scene are presented in the next section to give an
illustration of the field dynamics.

VI. Experimental Results

A result for the field excitations at time t0 is shown in
figs. 3(a) and 3(b). The sensor data were generated from

the scene described in fig. 1. According to those data the
stimuli of both fields were determined and are shown as
dashed lines in figs. 3(a) and 3(b) (for presentation pur-
poses the stimuli where shifted upwards from the zero-line).
For the presented situation the field excitations have a sin-
gle maximum at Ψ ' 1◦ and at ∆v ' −9m/s. The pres-
ence of single peak solutions proofs the reliability of the
controlled variable for Ψ and ∆v. The change of the steer-
ing angle and the velocity according to field excitations at
time t0 is given in figs. 4 and 5. The steering angle of the
vehicle changes smoothly over time (fig. 4(d)). The vehi-
cle drives through the right curve while keeping the lane
and following the leader. The change in the steering angle
(fig. 4(c)) can be found within a small range, so a com-
fortable trajectory is sustained. The stimulus (fig. 4(a)) as
well as the field-excitation (fig. 4(b)) show negative values
at the positions of objects to be avoided (e.g., parking ve-
hicles in view) and positive values at angle positions to be
favored (e.g., leading object and lane). The maximum of
the field-excitation is shifted to the left as long as the park-
ing vehicles can be detected, so the vehicle does not drive
in the center of the lane but a little bit shifted to the left,
to keep a security distance towards the parking vehicles.

(a) Field: steering angle (b) Field: velocity

Fig. 3. Excitation of a neural field. Additionally the stimulus ac-
cording to objects, lane and leader are presented for the steering
angle field (shifted to a virtual zero). For the velocity field the
stimulus according to the intended and the leader velocity are
presented (shifted to a virtual zero). The data material is deter-
mined according to the scene shown in fig. 1

The velocity (fig. 5(d)) is a smooth function of time.
The vehicle is not decelerated or accelerated abruptly be-
cause no dangerous situation occured. While the leader
gets closer, the velocity of the observing vehicle is reduced
such that the leader is within security distance finally. The
change in velocity (fig. 5(c)) is reduced smoothly until the
observing vehicle reaches the speed of the leading vehicle.
The field-excitation (fig. 5(b)) amplifies the decision im-
posed by the stimulus (fig. 5(a)).

VII. Optimization of Field Parameters

When dealing with dynamic neural field models the ques-
tion of how to adjust the model parameters arises. This
problem can be solved using gradient-based learning, evo-
lutionary optimization, or hybrid approaches, cf. [10]. For
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Fig. 4. Presentation of time dependent curves in dependence of
time [in s] and change in steering angle Ψ [in ◦] for (a) the
stimulus SΨ(Ψ, t) (b) the neural field uΨ(Ψ, t) (c) the deter-
mined change in steering angle (d) the angle position of the
vehicle relative to a stationary observer

(a) (b)

(c) (d)

Fig. 5. Presentation of time dependent curves in dependence of
time [in s] and change in velocity ∆v [in m/s] for (a) the stim-
ulus Sv(∆v, t) (b) the neural field uv(∆v, t) (c) the determined
change in velocity (d) the angle position of the vehicle relative
to a stationary observer

complex tasks, we favor evolutionary algorithms (EAs), i.e.,
the class of direct, stochastic optimization methods that
mimic principles of neo-Darwinian evolution [11]. Here we
employ a state-of-the-art evolution strategy (ES) for opti-
mizing the car trajectory during a lane change.

A. Evolutionary Optimization

A typical EA starts with a parent population of indi-
viduals each representing a trial solution of the problem
at hand. Each individual is assigned a fitness that is de-
termined by the quality of the solution it represents. An
offspring population of new individuals is generated by
stochastically altering individuals from the parent popu-
lation. Then the quality of each new solution is deter-
mined by means of a so called fitness function. A selection
mechanism that prefers solutions with better fitness values
chooses the individuals that constitute the next generation
of parents. This generational loop is repeated until a ter-
mination criterion is met.

In this study we use the CMA-ES [12], [13]. Each in-
dividual represents a real-valued vector, here the param-
eters of the field model. These variables are altered by
recombination and mutation. Intermediate recombination
is used, i.e., the recombined individual is the center of
mass of the parent population. Mutation is realized by
adding a normally distributed random vector with zero
mean. The covariance matrix of the mutation vectors is
adapted to improve the search process. The employed al-
gorithm can produce arbitrary normal mutation distribu-
tions. The so called strategy parameters that determine
the covariance matrix are updated online using a adapta-
tion method called covariance matrix adaptation (CMA).
The CMA implements important concepts for parameter
adjustment, e.g., the notion of derandomization: the mu-
tation distribution is changed in a deterministic way such
that the probability to reproduce steps in the search space
that have led to the actual population is increased. An-
other important concept is cumulation: In order to use the
information from previous generations more efficiently, the
search path the population has taken over a number of gen-
erations is considered. Rank-based (µ, λ)-selection is used,
i.e., the new parent population consists of the µ best of
the λ offspring. Because of the efficient use of information
gathered during the search process, µ and λ can be chosen
very small (5/10 in the following example).

B. Case Study: Lane Change

In the previous sections, we have shown the functional-
ity of driver assistance for automatic cruise control based
on neural field dynamics. For additional actions initiated
by the driver, e.g., an active lane change, the methodol-
ogy can be adapted. The main advantage of the neural
field approach—the additional input characteristic—is pre-
served in this formalism. Not only the desired lane but also
obstacles hindering the lane change can be taken into re-
gard.

Considering a lane change the leader- and the lane-
stimulus are replaced by one stimulus representing the cen-
ter of the desired lane. In case of no disturbing objects a
“correct” lane change has to be performed. In our context
the term “correct” means that changes in the steering an-
gle result in a smooth trajectory which comforts the driver.
The trajectory is determined by the parameters of the field
dynamics. The dotted line in fig. 7 shows the trajectory



without optimization: the steering angle is too high in the
beginning of the maneuver. We optimized the parame-
ters of the system so that the car trajectory comes close a
hyperbolic tangent function, which we regard as optimal.
The fitness function measures the differences between de-
sired and actual trajectory. As the neural field model is
translation-invariant, only a single test scenario is needed
(for a given speed). The fitness function is not differen-
tiable, so only direct optimization methods are applicable

After evolution, the differences between desired and ac-
tual trajectory nearly vanished, see fig. 6 for a typical evo-
lutionary optimization process and fig. 7 for the final result.
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Fig. 6. Sum-of-squares error of the best individual for a typical
optimization run. The center of mass of the initial population
has been initialized to a manually tuned solution.
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Fig. 7. Lane change: The dotted line shows the behavior before, the
solid line after optimization.

VIII. Conclusions

This paper shows the applicability of neural fields to the
problem of behavior planning in driver assistance systems.
The special behavior of cruise control was selected and
the stimuli of two one-dimensional neural fields control-
ling steering angle and velocity were designed to fulfill this
task. An active lane change is proposed. The parameters
of the dynamical system for the lane change are adjusted
by means of a state-of-the-art evolution strategy in order to
achieve a smooth trajectory. Ideal data produced by a sim-
ulation program were applied to test the performance of the
designed fields. The goal of producing single peak solutions
of the field-activation was reached for the presented scene.
The obtained values for the change in steering angle and

in velocity resulted in a comfortable trajectory and driving
speed. In the oncoming work the dynamics of the fields
have to be tested on a variety of scenes with more complex
object constellations (oncoming traffic, moving obstacles,
objects endangering the vehicle). Further work is going
to be invested in determination of stimuli from additional
information (pre-knowledge, GPS-information) which can
be superimposed additively to the existing stimuli. The
examination concerning noise in the input data has to be
performed as well to be able to work on real-world data.
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